Definition. A graph G is **connected** if for every pair of vertices a and b in G, there is a **path from** a **to** b **in** G.

Definition. A graph G is **connected** if for every pair of vertices a and b in G, there is a **path from** a **to** b **in** G.

That is, there exists a sequence of <u>distinct</u> vertices v_0, v_1, \ldots, v_k such that $v_0 = a$, $v_k = b$, and $v_{i-1}v_i$ is an edge of G for all $i, 1 \le i \le k$.

Definition. A graph G is **connected** if for every pair of vertices a and b in G, there is a **path from** a **to** b **in** G.

That is, there exists a sequence of <u>distinct</u> vertices v_0, v_1, \ldots, v_k such that $v_0 = a$, $v_k = b$, and $v_{i-1}v_i$ is an edge of G for all $i, 1 \le i \le k$.

Lemma A. IF there is a path from vertex *a* to vertex *b* in *G* and a path from vertex *b* to vertex *c* in *G*, THEN there is a path from vertex *a* to vertex *c* in *G*.

Definition. A graph G is **connected** if for every pair of vertices a and b in G, there is a **path from** a **to** b **in** G.

That is, there exists a sequence of <u>distinct</u> vertices v_0, v_1, \ldots, v_k such that $v_0 = a$, $v_k = b$, and $v_{i-1}v_i$ is an edge of G for all $i, 1 \le i \le k$.

Lemma A. IF there is a path from vertex a to vertex b in G and a path from vertex b to vertex c in G, THEN there is a path from vertex a to vertex c in G.

Proof. By hypothesis,

There exist

Definition. A graph G is **connected** if for every pair of vertices a and b in G, there is a **path from** a **to** b **in** G.

That is, there exists a sequence of <u>distinct</u> vertices v_0, v_1, \ldots, v_k such that $v_0 = a$, $v_k = b$, and $v_{i-1}v_i$ is an edge of G for all $i, 1 \le i \le k$.

Lemma A. IF there is a path from vertex a to vertex b in Gand a path from vertex b to vertex c in G, THEN there is a path from vertex a to vertex c in G.

Proof. By hypothesis,

There exist

If all the vertices are distinct,

If not all vertices are distinct,

Definition. A graph G is **connected** if for every pair of vertices a and b in G, there is a **path from** a **to** b **in** G.

That is, there exists a sequence of <u>distinct</u> vertices v_0, v_1, \ldots, v_k such that $v_0 = a$, $v_k = b$, and $v_{i-1}v_i$ is an edge of G for all $i, 1 \le i \le k$.

Lemma A. IF there is a path from vertex a to vertex b in Gand a path from vertex b to vertex c in G, THEN there is a path from vertex a to vertex c in G.

Proof. By hypothesis,

There exist

▶ If all the vertices are distinct, path *R* :

If not all vertices are distinct,

Definition. A graph G is **connected** if for every pair of vertices a and b in G, there is a **path from** a **to** b **in** G.

That is, there exists a sequence of <u>distinct</u> vertices v_0, v_1, \ldots, v_k such that $v_0 = a$, $v_k = b$, and $v_{i-1}v_i$ is an edge of G for all $i, 1 \le i \le k$.

Lemma A. IF there is a path from vertex a to vertex b in Gand a path from vertex b to vertex c in G, THEN there is a path from vertex a to vertex c in G.

Proof. By hypothesis,

- There exist
- ▶ If all the vertices are distinct, path *R* :
- If not all vertices are distinct, then choose the *first* vertex v_p in P that is also a vertex w_q in Q.

Lemma B. Let G be a connected graph. Suppose G contains a cycle C and e is an edge of C. The graph $H = G \setminus e$ is connected.

Lemma B. Let *G* be a connected graph. Suppose *G* contains a cycle *C* and *e* is an edge of *C*. The graph $H = G \setminus e$ is connected. *Proof.* Let *v* and *w* be two vertices of *H*. We need to show that there is a path from *v* to *w* in *H*.

Lemma B. Let G be a connected graph. Suppose G contains a cycle C and e is an edge of C. The graph $H = G \setminus e$ is connected. Proof. Let v and w be two vertices of H. We need to show that there is a path from v to w in H.

Because G is connected, there exists a path $P: v \rightarrow w$ in G. If P does not pass through e, then _____

Lemma B. Let G be a connected graph. Suppose G contains a cycle C and e is an edge of C. The graph $H = G \setminus e$ is connected. Proof. Let v and w be two vertices of H. We need to show that there is a path from v to w in H.

Because G is connected, there exists a path $P: v \rightarrow w$ in G. If P does not pass through e, then _____

If P does pass through e = xy, break up P as P_1eP_2 , where $P_1: v \to x$, $P_2: y \to w$. These are both paths in H.

Lemma B. Let G be a connected graph. Suppose G contains a cycle C and e is an edge of C. The graph $H = G \setminus e$ is connected. Proof. Let v and w be two vertices of H. We need to show that there is a path from v to w in H.

Because G is connected, there exists a path $P : v \rightarrow w$ in G. If P does not pass through e, then _____

If P does pass through e = xy, break up P as P_1eP_2 , where $P_1 : v \to x$, $P_2 : y \to w$. These are both paths in H.

Write the cycle *C* as $C = xz_1z_2 \cdots z_kyx$. Therefore, there is a path $Q : x \rightarrow y = xz_1z_2 \cdots z_ky$ in *H*.

Lemma B. Let G be a connected graph. Suppose G contains a cycle C and e is an edge of C. The graph $H = G \setminus e$ is connected. Proof. Let v and w be two vertices of H. We need to show that there is a path from v to w in H.

Because G is connected, there exists a path $P: v \rightarrow w$ in G. If P does not pass through e, then _____

If P does pass through e = xy, break up P as P_1eP_2 , where $P_1 : v \to x$, $P_2 : y \to w$. These are both paths in H.

Write the cycle *C* as $C = xz_1z_2 \cdots z_kyx$. Therefore, there is a path $Q : x \rightarrow y = xz_1z_2 \cdots z_ky$ in *H*.

Claim: There is a path from v to w in H. Why?

Theorem 1.3.1. If G is a connected graph with p vertices and q edges, then $p \le q + 1$.

Theorem 1.3.1. If G is a connected graph with p vertices and q edges, then $p \le q + 1$.

Proof. Induction on the number of edges of *G*.

► Base Case.

▶ Inductive Step.

Theorem 1.3.1. If G is a connected graph with p vertices and q edges, then $p \le q + 1$.

Proof. Induction on the number of edges of *G*.

▶ **Base Case.** If *G* is connected and has fewer than three edges, then *G* equals either:

Inductive Step.

Theorem 1.3.1. If G is a connected graph with p vertices and q edges, then $p \le q + 1$.

Proof. Induction on the number of edges of *G*.

▶ Base Case. If *G* is connected and has fewer than three edges, then *G* equals either:

Inductive Step.

Inductive hypothesis:

 $p \leq q + 1$ holds for all connected graphs with $k \geq 3$ edges.

Theorem 1.3.1. If G is a connected graph with p vertices and q edges, then $p \le q + 1$.

Proof. Induction on the number of edges of *G*.

▶ Base Case. If *G* is connected and has fewer than three edges, then *G* equals either:

Inductive Step.

Inductive hypothesis:

 $p \leq q + 1$ holds for all connected graphs with $k \geq 3$ edges.

We want to show:

 $p \leq q+1$ holds for all connected graphs with

Theorem 1.3.1. If G is a connected graph with p vertices and q edges, then $p \le q + 1$.

Proof. Induction on the number of edges of *G*.

▶ Base Case. If *G* is connected and has fewer than three edges, then *G* equals either:

Inductive Step.

Inductive hypothesis:

 $p \leq q + 1$ holds for all connected graphs with $k \geq 3$ edges.

We want to show:

 $p \leq q + 1$ holds for all connected graphs with k + 1 edges.

Theorem 1.3.1. If G is a connected graph with p vertices and q edges, then $p \le q + 1$.

Proof. Induction on the number of edges of *G*.

▶ **Base Case.** If *G* is connected and has fewer than three edges, then *G* equals either:

Inductive Step.

Inductive hypothesis:

 $p \leq q + 1$ holds for all connected graphs with $k \geq 3$ edges.

We want to show:

 $p \leq q+1$ holds for all connected graphs with k+1 edges.

Break into cases, depending on whether G contains a cycle:

(next page)

Case 1. There is a cycle *C* in *G*.

Case 2. There is no cycle in *G*.

► **Case 1.** There is a cycle *C* in *G*. Use Lemma B. After removing an edge from *C*,

Case 2. There is no cycle in *G*.

► **Case 1.** There is a cycle *C* in *G*. Use Lemma B. After removing an edge from *C*,

Case 2. There is no cycle in G.
 Find a path P in G that can not be extended.
 Claim: The endpoints of P, a and b, are leaves of G.

► **Case 1.** There is a cycle *C* in *G*. Use Lemma B. After removing an edge from *C*,

Case 2. There is no cycle in G.
 Find a path P in G that can not be extended.
 Claim: The endpoints of P, a and b, are leaves of G.

Remove a and its incident edge to form a new graph H.

► **Case 1.** There is a cycle *C* in *G*. Use Lemma B. After removing an edge from *C*,

Case 2. There is no cycle in G.
 Find a path P in G that can not be extended.
 Claim: The endpoints of P, a and b, are leaves of G.

Remove *a* and its incident edge to form a new graph *H*. Can we apply the inductive hypothesis to *H*?

► **Case 1.** There is a cycle *C* in *G*. Use Lemma B. After removing an edge from *C*,

Case 2. There is no cycle in G.
 Find a path P in G that can not be extended.
 Claim: The endpoints of P, a and b, are leaves of G.

Remove a and its incident edge to form a new graph H. Can we apply the inductive hypothesis to H?

★ Important Induction Item: Always remove edges. ★

Definition. A **tree** is a connected graph that contains no cycles. *Definition.* A **forest** is a graph that contains no cycle.

Definition. A **tree** is a connected graph that contains no cycles. *Definition.* A **forest** is a graph that contains no cycle.

These definitions imply: (Fill in the blanks)

1. Every connected component of a forest _____

Definition. A **tree** is a connected graph that contains no cycles. *Definition.* A **forest** is a graph that contains no cycle.

- 1. Every connected component of a forest ______.
- A connected forest _____.

Definition. A **tree** is a connected graph that contains no cycles. *Definition.* A **forest** is a graph that contains no cycle.

- 1. Every connected component of a forest ______.
- A connected forest _____.
- 3. A subgraph of a forest _____.

Definition. A **tree** is a connected graph that contains no cycles. *Definition.* A **forest** is a graph that contains no cycle.

- 1. Every connected component of a forest ______.
- 2. A connected forest _____.
- 3. A subgraph of a forest _____.
- 4. A subgraph of a tree _____.

Definition. A **tree** is a connected graph that contains no cycles. *Definition.* A **forest** is a graph that contains no cycle.

- 1. Every connected component of a forest _____.
- 2. A connected forest _____.
- 3. A subgraph of a forest _____.
- 4. A subgraph of a tree _____.
- 5. Every tree is a forest.

Definition. A **tree** is a connected graph that contains no cycles. *Definition.* A **forest** is a graph that contains no cycle.

These definitions imply: (Fill in the blanks)

- 1. Every connected component of a forest _____
- 2. A connected forest _____.
- 3. A subgraph of a forest _____.
- 4. A subgraph of a tree _____.
- 5. Every tree is a forest.

Trees are the smallest connected graphs; the following theorems show this and help classify graphs that are trees.

Definition. A **tree** is a connected graph that contains no cycles. *Definition.* A **forest** is a graph that contains no cycle.

These definitions imply: (Fill in the blanks)

- 1. Every connected component of a forest _____
- 2. A connected forest _____
- 3. A subgraph of a forest _____.
- 4. A subgraph of a tree _____.
- 5. Every tree is a forest.

Trees are the smallest connected graphs; the following theorems show this and help classify graphs that are trees.

Thm 1.3.2, 1.3.3: Let G be a connected graph with p vertices and q edges. Then, G is a tree $\iff p = q + 1$.

Thm 1.3.5. G is a tree iff there exists exactly one path between each pair of vertices.

Proof of Theorems 1.3.2 and 1.3.3

Thm 1.3.2, 1.3.3: Let G be connected with p vert's and q edges. Then,

G is a tree $\iff p = q + 1$.

Proof of Theorems 1.3.2 and 1.3.3

Thm 1.3.2,1.3.3: Let G be connected with p vert's and q edges. Then, G is a tree $\iff p = q + 1$.

Proof. (\Rightarrow) Use reasoning like Theorem 1.3.1:

Remove leaves one by one. Every time we remove a leaf,

Thm 1.3.2,1.3.3: Let G be connected with p vert's and q edges. Then, G is a tree $\iff p = q + 1$.

Proof. (\Rightarrow) Use reasoning like Theorem 1.3.1:

Remove leaves one by one. Every time we remove a leaf,

 (\Leftarrow) Proof by contradiction.

Suppose that G is connected and not a tree. Want to show: $p \neq q+1$.

Thm 1.3.2,1.3.3: Let G be connected with p vert's and q edges. Then, G is a tree $\iff p = q + 1$.

Proof. (\Rightarrow) Use reasoning like Theorem 1.3.1:

Remove leaves one by one. Every time we remove a leaf,

 (\Leftarrow) Proof by contradiction.

Suppose that G is connected and not a tree. Want to show: $p \neq q+1$.

A graph that is connected and is not a tree _____.

Thm 1.3.2,1.3.3: Let G be connected with p vert's and q edges. Then, G is a tree $\iff p = q + 1$.

Proof. (\Rightarrow) Use reasoning like Theorem 1.3.1:

Remove leaves one by one. Every time we remove a leaf,

 (\Leftarrow) Proof by contradiction.

Suppose that G is connected and not a tree. Want to show: $p \neq q+1$. A graph that is connected and is not a tree _____.

By Lemma B, remove an edge from this cycle to find a graph H with _____ vertices and _____ edges.

Thm 1.3.2,1.3.3: Let G be connected with p vert's and q edges. Then, G is a tree $\iff p = q + 1$.

Proof. (\Rightarrow) Use reasoning like Theorem 1.3.1:

Remove leaves one by one. Every time we remove a leaf,

 (\Leftarrow) Proof by contradiction.

Suppose that G is connected and not a tree. Want to show: $p \neq q+1$. A graph that is connected and is not a tree _____.

By Lemma B, remove an edge from this cycle to find a graph H with _____ vertices and _____ edges.

Theorem 1.3.1 applied to H implies that $p \leq (q-1) + 1$, so $p \leq q$.

Thm 1.3.2,1.3.3: Let G be connected with p vert's and q edges. Then, G is a tree $\iff p = q + 1$.

Proof. (\Rightarrow) Use reasoning like Theorem 1.3.1:

Remove leaves one by one. Every time we remove a leaf,

 (\Leftarrow) Proof by contradiction.

Suppose that G is connected and not a tree. Want to show: $p \neq q+1$.

A graph that is connected and is not a tree _____.

By Lemma B, remove an edge from this cycle to find a graph H with _____ vertices and _____ edges.

Theorem 1.3.1 applied to H implies that $p \le (q-1) + 1$, so $p \le q$. Therefore $p \ne q + 1$.

Thm 1.3.5. G is a tree iff there exists exactly one path between each pair of vertices.

 (\Rightarrow) Suppose that G is a tree.

Thm 1.3.5. G is a tree iff there exists exactly one path between each pair of vertices.

(⇒) Suppose that G is a tree. Then G is connected, so for all $v_1, v_2 \in V$, there exists at least one path between v_1 and v_2 .

Thm 1.3.5. G is a tree iff there exists exactly one path between each pair of vertices.

(⇒) Suppose that G is a tree. Then G is connected, so for all $v_1, v_2 \in V$, there exists at least one path between v_1 and v_2 . Suppose that there are two paths, $P_1 = v_1 u_1 u_2 \cdots u_n v_2$ and $P_2 = v_1 w_1 w_2 \cdots w_m v_2$.

Thm 1.3.5. G is a tree iff there exists exactly one path between each pair of vertices.

(⇒) Suppose that G is a tree. Then G is connected, so for all $v_1, v_2 \in V$, there exists at least one path between v_1 and v_2 . Suppose that there are two paths, $P_1 = v_1 u_1 u_2 \cdots u_n v_2$ and $P_2 = v_1 w_1 w_2 \cdots w_m v_2$.

$$(\Leftarrow)$$
 Suppose G is not a tree.
Either (a) or (b)

Thm 1.3.5. G is a tree iff there exists exactly one path between each pair of vertices.

(⇒) Suppose that G is a tree. Then G is connected, so for all $v_1, v_2 \in V$, there exists at least one path between v_1 and v_2 . Suppose that there are two paths, $P_1 = v_1 u_1 u_2 \cdots u_n v_2$ and $P_2 = v_1 w_1 w_2 \cdots w_m v_2$.

(⇐) Suppose G is not a tree.
Either (a) G is not connected or (b) G contains a cycle.
(a) There exist two vertices v₁ and v₂ with no path between them.

Thm 1.3.5. G is a tree iff there exists exactly one path between each pair of vertices.

(⇒) Suppose that G is a tree. Then G is connected, so for all $v_1, v_2 \in V$, there exists at least one path between v_1 and v_2 . Suppose that there are two paths, $P_1 = v_1 u_1 u_2 \cdots u_n v_2$ and $P_2 = v_1 w_1 w_2 \cdots w_m v_2$.

(⇐) Suppose G is not a tree.
Either (a) G is not connected or (b) G contains a cycle.
(a) There exist two vertices v₁ and v₂ with no path between them.
(b) For v₁, v₂ in a cycle, there exist two paths between v₁ and v₂.

Thm 1.3.5. G is a tree iff there exists exactly one path between each pair of vertices.

(⇒) Suppose that G is a tree. Then G is connected, so for all $v_1, v_2 \in V$, there exists at least one path between v_1 and v_2 . Suppose that there are two paths, $P_1 = v_1 u_1 u_2 \cdots u_n v_2$ and $P_2 = v_1 w_1 w_2 \cdots w_m v_2$.

(⇐) Suppose G is not a tree. Either (a) G is not connected or (b) G contains a cycle.
(a) There exist two vertices v₁ and v₂ with no path between them.
(b) For v₁, v₂ in a cycle, there exist two paths between v₁ and v₂. In both cases, it is not the case that between each pair of vertices, there exists exactly one path.

Definition. A bridge is an edge e such that its removal disconnects G. Theorem 2.4.1. Suppose that G is a connected. Then G is a tree \iff Every edge of G is a bridge.

Definition. A bridge is an edge e such that its removal disconnects G. Theorem 2.4.1. Suppose that G is a connected. Then G is a tree \iff Every edge of G is a bridge. Proof. (\Rightarrow) Let e = vw be the edge of a tree G. The graph $G \setminus e$ is no longer connected because

Definition. A bridge is an edge e such that its removal disconnects G. Theorem 2.4.1. Suppose that G is a connected. Then G is a tree \iff Every edge of G is a bridge. Proof. (\Rightarrow) Let e = vw be the edge of a tree G. The graph $G \setminus e$ is no longer connected because we removed from G its one path between v and w.

Definition. A bridge is an edge e such that its removal disconnects G.
Theorem 2.4.1. Suppose that G is a connected. Then G is a tree ⇔ Every edge of G is a bridge.
Proof. (⇒) Let e = vw be the edge of a tree G.
The graph G \ e is no longer connected because we removed from G its one path between v and w.
(⇐) Let G be a connected graph with a cycle C.

Definition. A bridge is an edge e such that its removal disconnects G.
Theorem 2.4.1. Suppose that G is a connected. Then G is a tree ⇔ Every edge of G is a bridge.
Proof. (⇒) Let e = vw be the edge of a tree G.
The graph G \ e is no longer connected because we removed from G its one path between v and w.
(⇐) Let G be a connected graph with a cycle C.
The removal of any edge in C does not disconnect the graph.

Definition. A bridge is an edge e such that its removal disconnects G.
Theorem 2.4.1. Suppose that G is a connected. Then G is a tree ⇔ Every edge of G is a bridge.
Proof. (⇒) Let e = vw be the edge of a tree G.
The graph G \ e is no longer connected because we removed from G its one path between v and w.
(⇐) Let G be a connected graph with a cycle C.
The removal of any edge in C does not disconnect the graph.

Theorem 3.2.1. A regular graph of even degree has no bridge.

Definition. A bridge is an edge e such that its removal disconnects G.
Theorem 2.4.1. Suppose that G is a connected. Then G is a tree ⇐⇒ Every edge of G is a bridge.
Proof. (⇒) Let e = vw be the edge of a tree G.
The graph G \ e is no longer connected because we removed from G its one path between v and w.
(⇐) Let G be a connected graph with a cycle C.
The removal of any edge in C does not disconnect the graph.

Theorem 3.2.1. A regular graph of even degree has no bridge. *Proof.* Let G be a regular graph of even degree with a bridge e = vw.