(Vertex) Colorings

Definition. A **coloring** of a graph G (with c colors) is a function $f: V(G) \rightarrow \{1, 2, ..., c\}$.

In other words, we assign colors to each of the vertices of G.

(Vertex) Colorings

Definition. A **coloring** of a graph G (with c colors) is a function $f: V(G) \rightarrow \{1, 2, ..., c\}$.

In other words, we assign colors to each of the vertices of G.

Definition. A **proper coloring** of G is a coloring of G such that no two adjacent vertices are labeled by the same color.

(Vertex) Colorings

Definition. A **coloring** of a graph G (with c colors) is a function $f: V(G) \rightarrow \{1, 2, ..., c\}$.

In other words, we assign colors to each of the vertices of G.

Definition. A **proper coloring** of G is a coloring of G such that no two adjacent vertices are labeled by the same color.

Example. W₆:

We can properly color W_6 with colors and no fewer.

(Vertex) Colorings

Definition. A **coloring** of a graph G (with c colors) is a function $f: V(G) \rightarrow \{1, 2, ..., c\}$.

In other words, we assign colors to each of the vertices of G.

Definition. A **proper coloring** of G is a coloring of G such that no two adjacent vertices are labeled by the same color.

Example. W₆:

33

We can properly color W_6 with ____ colors and no fewer.

Of interest: What is the fewest colors necessary to properly color *G*?

The chromatic number of a graph

Definition. The minimum # of colors necessary to properly color a graph G is called the **chromatic number** of G, denoted $\chi(G)$. (chi)

The chromatic number of a graph

Definition. The minimum # of colors necessary to properly color a graph G is called the **chromatic number** of G, denoted $\chi(G)$. (chi)

Example. Find $\chi(K_n)$.

Definition. The minimum # of colors necessary to properly color a graph G is called the **chromatic number** of G, denoted $\chi(G)$. (chi)

Example. Find $\chi(K_n)$.

Proof. A proper coloring of K_n must use at least ____ colors, because every vertex is adjacent to every other vertex.

Definition. The minimum # of colors necessary to properly color a graph G is called the **chromatic number** of G, denoted $\chi(G)$. (chi)

Example. Find $\chi(K_n)$.

Proof. A proper coloring of K_n must use at least ____ colors, because every vertex is adjacent to every other vertex. With fewer than ____ colors, there would be two adjacent vertices colored the same.

Definition. The minimum # of colors necessary to properly color a graph G is called the **chromatic number** of G, denoted $\chi(G)$. (chi)

Example. Find $\chi(K_n)$.

Proof. A proper coloring of K_n must use at least ____ colors, because every vertex is adjacent to every other vertex. With fewer than ____ colors, there would be two adjacent vertices colored the same. And indeed, placing a different color on each vertex is a proper coloring of K_n .

Definition. The minimum # of colors necessary to properly color a graph G is called the **chromatic number** of G, denoted $\chi(G)$. (chi)

Example. Find $\chi(K_n)$.

Proof. A proper coloring of K_n must use at least ____ colors, because every vertex is adjacent to every other vertex. With fewer than ____ colors, there would be two adjacent vertices colored the same. And indeed, placing a different color on each vertex is a proper coloring of K_n .

 $\chi(G) = k$ is the same as:

Definition. The minimum # of colors necessary to properly color a graph G is called the **chromatic number** of G, denoted $\chi(G)$. (chi)

Example. Find $\chi(K_n)$.

Proof. A proper coloring of K_n must use at least ____ colors, because every vertex is adjacent to every other vertex. With fewer than ____ colors, there would be two adjacent vertices colored the same. And indeed, placing a different color on each vertex is a proper coloring of K_n .

 $\chi(G) = k$ is the same as:

1. There is a proper coloring of G with k colors.

Definition. The minimum # of colors necessary to properly color a graph G is called the **chromatic number** of G, denoted $\chi(G)$. (chi)

Example. Find $\chi(K_n)$.

Proof. A proper coloring of K_n must use at least ____ colors, because every vertex is adjacent to every other vertex. With fewer than ____ colors, there would be two adjacent vertices colored the same. And indeed, placing a different color on each vertex is a proper coloring of K_n .

 $\chi(G) = k$ is the same as:

- 1. There is a proper coloring of G with k colors.
- 2. There is no proper coloring of G with k-1 colors.

The chromatic number of a graph

Definition. The minimum # of colors necessary to properly color a graph G is called the **chromatic number** of G, denoted $\chi(G)$. (chi)

Example. Find $\chi(K_n)$.

Proof. A proper coloring of K_n must use at least ____ colors, because every vertex is adjacent to every other vertex. With fewer than ____ colors, there would be two adjacent vertices colored the same. And indeed, placing a different color on each vertex is a proper coloring of K_n .

 $\chi(G) = k$ is the same as:

- 1. There is a proper coloring of G with k colors. (Show it!)
- 2. There is no proper coloring of G with k-1 colors. (Prove it!)

Chromatic numbers and subgraphs

Lemma C: If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.

Chromatic numbers and subgraphs

Lemma C: If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.

Proof. If $\chi(G) = k$, then

Lemma C: If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.

Proof. If $\chi(G) = k$, then _____

Lemma C: If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.

Proof. If $\chi(G) = k$, then

Let the vertices of H inherit their coloring from G.

This gives a proper coloring of H using k colors.

Lemma C: If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.

Proof. If $\chi(G) = k$, then

Let the vertices of H inherit their coloring from G.

This gives a proper coloring of H using k colors.

In turn, this implies $\chi(H) \leq k$.

Chromatic numbers and subgraphs

Lemma C: If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.

Proof. If $\chi(G) = k$, then

Let the vertices of H inherit their coloring from G.

This gives a proper coloring of H using k colors. In turn, this implies x(H) < k

In turn, this implies $\chi(H) \leq k$.

If G contains a **clique** of size k (subgraph isomorphic to K_k), then what can we say about $\chi(G)$?

Lemma C: If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.

Proof. If $\chi(G) = k$, then

Let the vertices of H inherit their coloring from G.

This gives a proper coloring of H using k colors.

In turn, this implies $\chi(H) \leq k$.

If G contains a **clique** of size k (subgraph isomorphic to K_k), then what can we say about $\chi(G)$?

Definition. The clique number $\omega(G)$ is the size of the largest complete graph contained in G.

Lemma C: If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.

Proof. If $\chi(G) = k$, then

Let the vertices of H inherit their coloring from G.

This gives a proper coloring of H using k colors.

In turn, this implies $\chi(H) \leq k$.

If G contains a **clique** of size k (subgraph isomorphic to K_k), then what can we say about $\chi(G)$?

Definition. The clique number $\omega(G)$ is the size of the largest complete graph contained in G.

Theorem. For any graph G, $\chi(G) \ge \omega(G)$.

Lemma C: If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.

Proof. If $\chi(G) = k$, then

Let the vertices of H inherit their coloring from G.

This gives a proper coloring of H using k colors.

In turn, this implies $\chi(H) \leq k$.

If G contains a **clique** of size k (subgraph isomorphic to K_k), then what can we say about $\chi(G)$?

Definition. The clique number $\omega(G)$ is the size of the largest complete graph contained in G.

Theorem. For any graph G, $\chi(G) \geq \omega(G)$.

Proof. Apply Lemma C to the subgraph of G isomorphic to $K_{\omega(G)}$.

Lemma C: If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.

Proof. If $\chi(G) = k$, then

Let the vertices of H inherit their coloring from G.

This gives a proper coloring of H using k colors.

In turn, this implies $\chi(H) \leq k$.

If G contains a **clique** of size k (subgraph isomorphic to K_k), then what can we say about $\chi(G)$?

Definition. The **clique number** $\omega(G)$ is the size of the largest complete graph contained in G.

Theorem. For any graph G, $\chi(G) \ge \omega(G)$.

Proof. Apply Lemma C to the subgraph of G isomorphic to $K_{\omega(G)}$.

Example. Calculate $\chi(G)$ for this graph G:

Critical graphs

How to prove $\chi(G) \ge k$?

Critical graphs

How to prove $\chi(G) \ge k$?

One way: Find a (small) subgraph H of G that requires k colors.

Critical graphs

How to prove $\chi(G) \ge k$?

One way: Find a (small) subgraph H of G that requires k colors.

Definition. A graph H is called **critical** if for every proper subgraph $J \subsetneq H$, then $\chi(J) < \chi(H)$.

Critical graphs

How to prove $\chi(G) \ge k$?

One way: Find a (small) subgraph H of G that requires k colors.

Definition. A graph H is called **critical** if for every proper subgraph $J \subsetneq H$, then $\chi(J) < \chi(H)$.

Theorem 2.1.2: Every graph G contains a critical subgraph H such that $\chi(H) = \chi(G)$.

Critical graphs

How to prove $\chi(G) \ge k$?

One way: Find a (small) subgraph H of G that requires k colors.

Definition. A graph H is called **critical** if for every proper subgraph $J \subsetneq H$, then $\chi(J) < \chi(H)$.

Theorem 2.1.2: Every graph G contains a critical subgraph H such that $\chi(H) = \chi(G)$.

(Stupid) Proof. If G is critical, stop. Define H = G.

Critical graphs

How to prove $\chi(G) \geq k$?

One way: Find a (small) subgraph H of G that requires k colors.

Definition. A graph H is called **critical** if for every proper subgraph $J \subsetneq H$, then $\chi(J) < \chi(H)$.

Theorem 2.1.2: Every graph G contains a critical subgraph H such that $\chi(H) = \chi(G)$.

(Stupid) Proof. If G is critical, stop. Define H = G.

Critical graphs

How to prove $\chi(G) \geq k$?

One way: Find a (small) subgraph H of G that requires k colors.

Definition. A graph H is called **critical** if for every proper subgraph $J \subsetneq H$, then $\chi(J) < \chi(H)$.

Theorem 2.1.2: Every graph G contains a critical subgraph H such that $\chi(H) = \chi(G)$.

(Stupid) Proof. If G is critical, stop. Define H = G.

If not, then there exists a proper subgraph G_2 of G_1 with ______. If G_2 is critical, stop. Define $H = G_2$.

36

Critical graphs

How to prove $\chi(G) \geq k$?

One way: Find a (small) subgraph H of G that requires k colors.

Definition. A graph H is called **critical** if for every proper subgraph $J \subseteq H$, then $\chi(J) < \chi(H)$.

Theorem 2.1.2: Every graph G contains a critical subgraph H such that $\chi(H) = \chi(G)$.

(Stupid) Proof. If G is critical, stop. Define H = G.

If not, then there exists a proper subgraph G_1 of G with ______. If G_1 is critical, stop. Define $H = G_1$.

If not, then there exists a proper subgraph G_2 of G_1 with ______. If G_2 is critical, stop. Define $H = G_2$. If not, then there exists \cdots

Since _____, there will be some proper subgraph G_l of G_{l-1} such that G_l is critical and $\chi(G_l) = \chi(G_{l-1}) = \cdots = \chi(G)$.

Critical graphs

What do we know about critical graphs?

Critical graphs

What do we know about critical graphs?

Thm 2.1.1: Every critical graph is connected.

Critical graphs

What do we know about critical graphs?

Thm 2.1.1: Every critical graph is connected.

Thm 2.1.3: If G is critical and $\chi(G) = 4$, then $\deg(v) \geq 3$ for all v.

Critical graphs

What do we know about critical graphs?

Thm 2.1.1: Every critical graph is connected.

Thm 2.1.3: If G is critical and $\chi(G) = 4$, then $\deg(v) \geq 3$ for all v.

Proof. Suppose not. Then there is some $v \in V(G)$ with $deg(v) \le 2$. Remove v from G to create H.

Critical graphs

What do we know about critical graphs?

Thm 2.1.1: Every critical graph is connected.

Thm 2.1.3: If G is critical and $\chi(G) = 4$, then $\deg(v) \geq 3$ for all v.

Proof. Suppose not. Then there is some $v \in V(G)$ with $deg(v) \le 2$. Remove v from G to create H.

Similarly: If G is critical, then for all $v \in V(G)$, $\deg(v) \ge \chi(G) - 1$.

Vertex Coloring — §2.1 38

Bipartite graphs

Question. What is $\chi(C_n)$ when n is odd?

Answer.

Bipartite graphs

Question. What is $\chi(C_n)$ when n is odd?

Answer.

Definition. A graph is called **bipartite** if $\chi(G) \leq 2$.

Example. $K_{m,n}$, \square_n , Trees

Bipartite graphs

Question. What is $\chi(C_n)$ when n is odd?

Answer.

Definition. A graph is called **bipartite** if $\chi(G) \leq 2$.

Example. $K_{m,n}$, \square_n , Trees

Thm 2.1.6: G is bipartite \iff every cycle in G has even length.

Bipartite graphs

Question. What is $\chi(C_n)$ when n is odd?

Answer.

Definition. A graph is called **bipartite** if $\chi(G) \leq 2$.

Example. $K_{m,n}$, \square_n , Trees

Thm 2.1.6: G is bipartite \iff every cycle in G has even length.

 (\Rightarrow) Let G be bipartite. Assume that there is some cycle C of odd length contained in G...

Vertex Coloring — §2.1 39

Proof of Theorem 2.1.6

 (\Leftarrow) Suppose that every cycle in G has even length. We want to show that G is bipartite. Consider the case when G is connected.

Vertex Coloring — §2.1

Proof of Theorem 2.1.6

 (\Leftarrow) Suppose that every cycle in G has even length. We want to show that G is bipartite. Consider the case when G is connected.

Plan: Construct a coloring on *G* and prove that it is proper.

 (\Leftarrow) Suppose that every cycle in G has even length. We want to show that G is bipartite. Consider the case when G is connected.

Plan: Construct a coloring on *G* and prove that it is proper.

Choose some starting vertex x and color it blue. For every other vertex y, calculate the distance from y to x and then color y:

$$\begin{cases} \text{blue} & \text{if } d(x,y) \text{ is even.} \\ \text{red} & \text{if } d(x,y) \text{ is odd.} \end{cases}$$

 (\Leftarrow) Suppose that every cycle in G has even length. We want to show that G is bipartite. Consider the case when G is connected.

Plan: Construct a coloring on *G* and prove that it is proper.

Choose some starting vertex x and color it blue. For every other vertex y, calculate the distance from y to x and then color y:

$$\begin{cases} \text{blue} & \text{if } d(x,y) \text{ is even.} \\ \text{red} & \text{if } d(x,y) \text{ is odd.} \end{cases}$$

Question: Is this a proper coloring of G?

If not, then

(\Leftarrow) Suppose that every cycle in G has even length. We want to show that G is bipartite. Consider the case when G is connected.

Plan: Construct a coloring on *G* and prove that it is proper.

Choose some starting vertex x and color it blue. For every other vertex y, calculate the distance from y to x and then color y:

$$\begin{cases} \text{blue} & \text{if } d(x,y) \text{ is even.} \\ \text{red} & \text{if } d(x,y) \text{ is odd.} \end{cases}$$

Question: Is this a proper coloring of G?

If not, then there are two adjacent vertices v and w of the same color.

(\Leftarrow) Suppose that every cycle in G has even length. We want to show that G is bipartite. Consider the case when G is connected.

Plan: Construct a coloring on *G* and prove that it is proper.

Choose some starting vertex x and color it blue. For every other vertex y, calculate the distance from y to x and then color y:

$$\begin{cases} \text{blue} & \text{if } d(x,y) \text{ is even.} \\ \text{red} & \text{if } d(x,y) \text{ is odd.} \end{cases}$$

Question: Is this a proper coloring of *G*?

If not, then there are two adjacent vertices v and w of the same color.

Claim 1: Their distance to the x is the same.

(\Leftarrow) Suppose that every cycle in G has even length. We want to show that G is bipartite. Consider the case when G is connected.

Plan: Construct a coloring on *G* and prove that it is proper.

Choose some starting vertex x and color it blue. For every other vertex y, calculate the distance from y to x and then color y:

$$\begin{cases} \text{blue} & \text{if } d(x,y) \text{ is even.} \\ \text{red} & \text{if } d(x,y) \text{ is odd.} \end{cases}$$

Question: Is this a proper coloring of G?

If not, then there are two adjacent vertices v and w of the same color.

Claim 1: Their distance to the x is the same.

Claim 2: There exists an odd cycle in G.

39

Proof of Theorem 2.1.6

(\Leftarrow) Suppose that every cycle in G has even length. We want to show that G is bipartite. Consider the case when G is connected.

Plan: Construct a coloring on *G* and prove that it is proper.

Choose some starting vertex x and color it blue. For every other vertex y, calculate the distance from y to x and then color y:

$$\begin{cases} \text{blue} & \text{if } d(x,y) \text{ is even.} \\ \text{red} & \text{if } d(x,y) \text{ is odd.} \end{cases}$$

Question: Is this a proper coloring of G?

If not, then there are two adjacent vertices v and w of the same color.

Claim 1: Their distance to the x is the same.

Claim 2: There exists an odd cycle in G.

This contradicts our hypothesis, so a 2-coloring exists; G is bipartite.