(Vertex) Colorings

Definition. A coloring of a graph G (with c colors) is a function $f: V(G) \rightarrow\{1,2, \ldots, c\}$.
In other words, we assign colors to each of the vertices of G.

(Vertex) Colorings

Definition. A coloring of a graph G (with c colors) is a function $f: V(G) \rightarrow\{1,2, \ldots, c\}$.
In other words, we assign colors to each of the vertices of G.
Definition. A proper coloring of G is a coloring of G such that no two adjacent vertices are labeled by the same color.

(Vertex) Colorings

Definition. A coloring of a graph G (with c colors) is a function $f: V(G) \rightarrow\{1,2, \ldots, c\}$.
In other words, we assign colors to each of the vertices of G.
Definition. A proper coloring of G is a coloring of G such that no two adjacent vertices are labeled by the same color.

Example. W_{6} :

We can properly color W_{6} with \qquad colors and no fewer.

(Vertex) Colorings

Definition. A coloring of a graph G (with c colors) is a function $f: V(G) \rightarrow\{1,2, \ldots, c\}$.
In other words, we assign colors to each of the vertices of G.
Definition. A proper coloring of G is a coloring of G such that no two adjacent vertices are labeled by the same color.

Example. W_{6} :

We can properly color W_{6} with \qquad colors and no fewer.

Of interest: What is the fewest colors necessary to properly color G ?

The chromatic number of a graph

Definition. The minimum \# of colors necessary to properly color a graph G is called the chromatic number of G, denoted $\chi(G)$. (chi)

The chromatic number of a graph

Definition. The minimum \# of colors necessary to properly color a graph G is called the chromatic number of G, denoted $\chi(G)$. (chi)

Example. Find $\chi\left(K_{n}\right)$.

The chromatic number of a graph

Definition. The minimum \# of colors necessary to properly color a graph G is called the chromatic number of G, denoted $\chi(G)$. (chi)

Example. Find $\chi\left(K_{n}\right)$.
Proof. A proper coloring of K_{n} must use at least ___ colors, because every vertex is adjacent to every other vertex.

The chromatic number of a graph

Definition. The minimum \# of colors necessary to properly color a graph G is called the chromatic number of G, denoted $\chi(G)$. (chi)

Example. Find $\chi\left(K_{n}\right)$.
Proof. A proper coloring of K_{n} must use at least ___ colors, because every vertex is adjacent to every other vertex. With fewer than \qquad colors, there would be two adjacent vertices colored the same.

The chromatic number of a graph

Definition. The minimum \# of colors necessary to properly color a graph G is called the chromatic number of G, denoted $\chi(G)$. (chi)

Example. Find $\chi\left(K_{n}\right)$.
Proof. A proper coloring of K_{n} must use at least ___ colors, because every vertex is adjacent to every other vertex. With fewer than \qquad colors, there would be two adjacent vertices colored the same. And indeed, placing a different color on each vertex is a proper coloring of K_{n}.

The chromatic number of a graph

Definition. The minimum \# of colors necessary to properly color a graph G is called the chromatic number of G, denoted $\chi(G)$. (chi)

Example. Find $\chi\left(K_{n}\right)$.
Proof. A proper coloring of K_{n} must use at least ___ colors, because every vertex is adjacent to every other vertex. With fewer than \qquad colors, there would be two adjacent vertices colored the same. And indeed, placing a different color on each vertex is a proper coloring of K_{n}.
$\chi(G)=k$ is the same as:

The chromatic number of a graph

Definition. The minimum \# of colors necessary to properly color a graph G is called the chromatic number of G, denoted $\chi(G)$. (chi)

Example. Find $\chi\left(K_{n}\right)$.
Proof. A proper coloring of K_{n} must use at least ___ colors, because every vertex is adjacent to every other vertex. With fewer than \qquad colors, there would be two adjacent vertices colored the same. And indeed, placing a different color on each vertex is a proper coloring of K_{n}.
$\chi(G)=k$ is the same as:

1. There is a proper coloring of G with k colors.

The chromatic number of a graph

Definition. The minimum \# of colors necessary to properly color a graph G is called the chromatic number of G, denoted $\chi(G)$. (chi)

Example. Find $\chi\left(K_{n}\right)$.
Proof. A proper coloring of K_{n} must use at least ___ colors, because every vertex is adjacent to every other vertex. With fewer than \qquad colors, there would be two adjacent vertices colored the same. And indeed, placing a different color on each vertex is a proper coloring of K_{n}.
$\chi(G)=k$ is the same as:

1. There is a proper coloring of G with k colors.
2. There is no proper coloring of G with $k-1$ colors.

The chromatic number of a graph

Definition. The minimum \# of colors necessary to properly color a graph G is called the chromatic number of G, denoted $\chi(G)$. (chi)

Example. Find $\chi\left(K_{n}\right)$.
Proof. A proper coloring of K_{n} must use at least ___ colors, because every vertex is adjacent to every other vertex. With fewer than \qquad colors, there would be two adjacent vertices colored the same. And indeed, placing a different color on each vertex is a proper coloring of K_{n}.
$\chi(G)=k$ is the same as:

1. There is a proper coloring of G with k colors.
2. There is no proper coloring of G with $k-1$ colors. (Prove it!)

Chromatic numbers and subgraphs
Lemma C : If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.

Chromatic numbers and subgraphs
Lemma C : If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.
Proof. If $\chi(G)=k$, then

Chromatic numbers and subgraphs

Lemma C : If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.
Proof. If $\chi(G)=k$, then

Chromatic numbers and subgraphs

Lemma C : If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.
Proof. If $\chi(G)=k$, then
Let the vertices of H inherit their coloring from G. This gives a proper coloring of H using k colors.

Chromatic numbers and subgraphs

Lemma C : If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.
Proof. If $\chi(G)=k$, then
Let the vertices of H inherit their coloring from G. This gives a proper coloring of H using k colors.
In turn, this implies $\chi(H) \leq k$.

Chromatic numbers and subgraphs

Lemma C : If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.
Proof. If $\chi(G)=k$, then
Let the vertices of H inherit their coloring from G. This gives a proper coloring of H using k colors. In turn, this implies $\chi(H) \leq k$.
If G contains a clique of size k (subgraph isomorphic to K_{k}), then what can we say about $\chi(G)$?

Chromatic numbers and subgraphs

Lemma C : If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.
Proof. If $\chi(G)=k$, then
Let the vertices of H inherit their coloring from G.
This gives a proper coloring of H using k colors.
In turn, this implies $\chi(H) \leq k$.
If G contains a clique of size k (subgraph isomorphic to K_{k}), then what can we say about $\chi(G)$?
Definition. The clique number $\omega(G)$ is the size of the largest complete graph contained in G.

Chromatic numbers and subgraphs

Lemma C : If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.
Proof. If $\chi(G)=k$, then
Let the vertices of H inherit their coloring from G.
This gives a proper coloring of H using k colors.
In turn, this implies $\chi(H) \leq k$.
If G contains a clique of size k (subgraph isomorphic to K_{k}), then what can we say about $\chi(G)$?
Definition. The clique number $\omega(G)$ is the size of the largest complete graph contained in G.
Theorem. For any graph $G, \chi(G) \geq \omega(G)$.

Chromatic numbers and subgraphs

Lemma C : If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.
Proof. If $\chi(G)=k$, then
Let the vertices of H inherit their coloring from G.
This gives a proper coloring of H using k colors.
In turn, this implies $\chi(H) \leq k$.
If G contains a clique of size k (subgraph isomorphic to K_{k}), then what can we say about $\chi(G)$?
Definition. The clique number $\omega(G)$ is the size of the largest complete graph contained in G.

Theorem. For any graph $G, \chi(G) \geq \omega(G)$.
Proof. Apply Lemma C to the subgraph of G isomorphic to $K_{\omega(G)}$.

Chromatic numbers and subgraphs

Lemma C : If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.
Proof. If $\chi(G)=k$, then
Let the vertices of H inherit their coloring from G.
This gives a proper coloring of H using k colors.
In turn, this implies $\chi(H) \leq k$.
If G contains a clique of size k (subgraph isomorphic to K_{k}), then what can we say about $\chi(G)$?
Definition. The clique number $\omega(G)$ is the size of the largest complete graph contained in G.

Theorem. For any graph $G, \chi(G) \geq \omega(G)$.
Proof. Apply Lemma C to the subgraph of G isomorphic to $K_{\omega(G)}$.
Example. Calculate $\chi(G)$ for this graph G :

Critical graphs

How to prove $\chi(G) \geq k$?

Critical graphs

How to prove $\chi(G) \geq k$?
One way: Find a (small) subgraph H of G that requires k colors.

Critical graphs

How to prove $\chi(G) \geq k$?
One way: Find a (small) subgraph H of G that requires k colors.
Definition. A graph H is called critical if for every proper subgraph $J \subsetneq H$, then $\chi(J)<\chi(H)$.

Critical graphs

How to prove $\chi(G) \geq k$?
One way: Find a (small) subgraph H of G that requires k colors.
Definition. A graph H is called critical if for every proper subgraph $J \subsetneq H$, then $\chi(J)<\chi(H)$.

Theorem 2.1.2: Every graph G contains a critical subgraph H such that $\chi(H)=\chi(G)$.

Critical graphs

How to prove $\chi(G) \geq k$?
One way: Find a (small) subgraph H of G that requires k colors.
Definition. A graph H is called critical if for every proper subgraph $J \subsetneq H$, then $\chi(J)<\chi(H)$.

Theorem 2.1.2: Every graph G contains a critical subgraph H such that $\chi(H)=\chi(G)$.
(Stupid) Proof. If G is critical, stop. Define $H=G$.

Critical graphs

How to prove $\chi(G) \geq k$?
One way: Find a (small) subgraph H of G that requires k colors.
Definition. A graph H is called critical if for every proper subgraph $J \subsetneq H$, then $\chi(J)<\chi(H)$.

Theorem 2.1.2: Every graph G contains a critical subgraph H such that $\chi(H)=\chi(G)$.
(Stupid) Proof. If G is critical, stop. Define $H=G$.
If not, then there exists a proper subgraph G_{1} of G with \qquad If G_{1} is critical, stop. Define $H=G_{1}$.

Critical graphs

How to prove $\chi(G) \geq k$?
One way: Find a (small) subgraph H of G that requires k colors.
Definition. A graph H is called critical if for every proper subgraph $J \subsetneq H$, then $\chi(J)<\chi(H)$.

Theorem 2.1.2: Every graph G contains a critical subgraph H such that $\chi(H)=\chi(G)$.
(Stupid) Proof. If G is critical, stop. Define $H=G$.
If not, then there exists a proper subgraph G_{1} of G with \qquad If G_{1} is critical, stop. Define $H=G_{1}$.
If not, then there exists a proper subgraph G_{2} of G_{1} with \qquad If G_{2} is critical, stop. Define $H=G_{2}$.

Critical graphs

How to prove $\chi(G) \geq k$?
One way: Find a (small) subgraph H of G that requires k colors.
Definition. A graph H is called critical if for every proper subgraph $J \subsetneq H$, then $\chi(J)<\chi(H)$.

Theorem 2.1.2: Every graph G contains a critical subgraph H such that $\chi(H)=\chi(G)$.
(Stupid) Proof. If G is critical, stop. Define $H=G$.
If not, then there exists a proper subgraph G_{1} of G with \qquad If G_{1} is critical, stop. Define $H=G_{1}$.
If not, then there exists a proper subgraph G_{2} of G_{1} with \qquad If G_{2} is critical, stop. Define $H=G_{2}$.
If not, then there exists ...
Since \qquad , there will be some proper subgraph G_{l} of G_{l-1} such that G_{l} is critical and $\chi\left(G_{l}\right)=\chi\left(G_{l-1}\right)=\cdots=\chi(G)$.

Critical graphs

What do we know about critical graphs?

Critical graphs

What do we know about critical graphs?
Thm 2.1.1: Every critical graph is connected.

Critical graphs

What do we know about critical graphs?
Thm 2.1.1: Every critical graph is connected.
Thm 2.1.3: If G is critical and $\chi(G)=4$, then $\operatorname{deg}(v) \geq 3$ for all v.

Critical graphs

What do we know about critical graphs?
Thm 2.1.1: Every critical graph is connected.
Thm 2.1.3: If G is critical and $\chi(G)=4$, then $\operatorname{deg}(v) \geq 3$ for all v.
Proof. Suppose not. Then there is some $v \in V(G)$ with $\operatorname{deg}(v) \leq 2$.
Remove v from G to create H.

Critical graphs

What do we know about critical graphs?
Thm 2.1.1: Every critical graph is connected.
Thm 2.1.3: If G is critical and $\chi(G)=4$, then $\operatorname{deg}(v) \geq 3$ for all v.
Proof. Suppose not. Then there is some $v \in V(G)$ with $\operatorname{deg}(v) \leq 2$. Remove v from G to create H.

Similarly: If G is critical, then for all $v \in V(G), \operatorname{deg}(v) \geq \chi(G)-1$.

Bipartite graphs

Question. What is $\chi\left(C_{n}\right)$ when n is odd?
Answer.

Bipartite graphs

Question. What is $\chi\left(C_{n}\right)$ when n is odd?
Answer.
Definition. A graph is called bipartite if $\chi(G) \leq 2$.
Example. $K_{m, n}, \square_{n}$, Trees

Bipartite graphs

Question. What is $\chi\left(C_{n}\right)$ when n is odd?
Answer.
Definition. A graph is called bipartite if $\chi(G) \leq 2$.
Example. $K_{m, n}, \square_{n}$, Trees

Thm 2.1.6: G is bipartite \Longleftrightarrow every cycle in G has even length.

Bipartite graphs

Question. What is $\chi\left(C_{n}\right)$ when n is odd?
Answer.
Definition. A graph is called bipartite if $\chi(G) \leq 2$.
Example. $K_{m, n}, \square_{n}$, Trees

Thm 2.1.6: G is bipartite \Longleftrightarrow every cycle in G has even length.
(\Rightarrow) Let G be bipartite. Assume that there is some cycle C of odd length contained in G...

Proof of Theorem 2.1.6

(\Leftarrow) Suppose that every cycle in G has even length. We want to show that G is bipartite. Consider the case when G is connected.

Proof of Theorem 2.1.6

(\Leftarrow) Suppose that every cycle in G has even length. We want to show that G is bipartite. Consider the case when G is connected. Plan: Construct a coloring on G and prove that it is proper.

Proof of Theorem 2.1.6

(\Leftarrow) Suppose that every cycle in G has even length. We want to show that G is bipartite. Consider the case when G is connected. Plan: Construct a coloring on G and prove that it is proper. Choose some starting vertex x and color it blue. For every other vertex y, calculate the distance from y to x and then color y :

$$
\begin{cases}\text { blue } & \text { if } d(x, y) \text { is even. } \\ \text { red } & \text { if } d(x, y) \text { is odd. }\end{cases}
$$

Proof of Theorem 2.1.6

(\Leftarrow) Suppose that every cycle in G has even length. We want to show that G is bipartite. Consider the case when G is connected.

Plan: Construct a coloring on G and prove that it is proper.
Choose some starting vertex x and color it blue. For every other vertex y, calculate the distance from y to x and then color y :

$$
\begin{cases}\text { blue } & \text { if } d(x, y) \text { is even. } \\ \text { red } & \text { if } d(x, y) \text { is odd. }\end{cases}
$$

Question: Is this a proper coloring of G ?
If not, then

Proof of Theorem 2.1.6

(\Leftarrow) Suppose that every cycle in G has even length. We want to show that G is bipartite. Consider the case when G is connected.

Plan: Construct a coloring on G and prove that it is proper.
Choose some starting vertex x and color it blue. For every other vertex y, calculate the distance from y to x and then color y :

$$
\begin{cases}\text { blue } & \text { if } d(x, y) \text { is even. } \\ \text { red } & \text { if } d(x, y) \text { is odd. }\end{cases}
$$

Question: Is this a proper coloring of G ?
If not, then there are two adjacent vertices v and w of the same color.

Proof of Theorem 2.1.6

(\Leftarrow) Suppose that every cycle in G has even length. We want to show that G is bipartite. Consider the case when G is connected.

Plan: Construct a coloring on G and prove that it is proper.
Choose some starting vertex x and color it blue. For every other vertex y, calculate the distance from y to x and then color y :

$$
\begin{cases}\text { blue } & \text { if } d(x, y) \text { is even. } \\ \text { red } & \text { if } d(x, y) \text { is odd. }\end{cases}
$$

Question: Is this a proper coloring of G ?
If not, then there are two adjacent vertices v and w of the same color.
Claim 1: Their distance to the x is the same.

Proof of Theorem 2.1.6

(\Leftarrow) Suppose that every cycle in G has even length. We want to show that G is bipartite. Consider the case when G is connected.

Plan: Construct a coloring on G and prove that it is proper.
Choose some starting vertex x and color it blue. For every other vertex y, calculate the distance from y to x and then color y :

$$
\begin{cases}\text { blue } & \text { if } d(x, y) \text { is even. } \\ \text { red } & \text { if } d(x, y) \text { is odd. }\end{cases}
$$

Question: Is this a proper coloring of G ?
If not, then there are two adjacent vertices v and w of the same color.
Claim 1: Their distance to the x is the same.
Claim 2: There exists an odd cycle in G.

Proof of Theorem 2.1.6

(\Leftarrow) Suppose that every cycle in G has even length. We want to show that G is bipartite. Consider the case when G is connected.

Plan: Construct a coloring on G and prove that it is proper.
Choose some starting vertex x and color it blue. For every other vertex y, calculate the distance from y to x and then color y :

$$
\begin{cases}\text { blue } & \text { if } d(x, y) \text { is even. } . \\ \text { red } & \text { if } d(x, y) \text { is odd. }\end{cases}
$$

Question: Is this a proper coloring of G ?
If not, then there are two adjacent vertices v and w of the same color.
Claim 1: Their distance to the x is the same.
Claim 2: There exists an odd cycle in G.
This contradicts our hypothesis, so a 2-coloring exists; G is bipartite.

