Edge Coloring

We can also color the edges of a graph.
Definition. An edge coloring of a graph G is a labeling of the edges of G with colors. [Technically, a function $f: E(G) \rightarrow\{1,2, \ldots, /\}$.]

Definition. A proper edge coloring of G is an edge coloring of G such that no two adjacent edges are colored the same.

Example. Cube graph (\square_{3}):

We can properly edge color \square_{3} with \qquad colors and no fewer.

Definition. The minimum number of colors necessary to properly edge color a graph G is called the edge chromatic number of G, denoted $\chi^{\prime}(G)=$ "chi prime".

Edge coloring theorems

Question. What is a natural lower bound for $\chi^{\prime}(G)$?
Thm 2.2.1: For any graph $G, \chi^{\prime}(G) \geq$ \qquad .
Thm 2.2.2: Vizing's Theorem:
For every graph $G, \chi^{\prime}(G)$ equals either $\Delta(G)$ or $\Delta(G)+1$.
Proof. Hard. (See reference [24] if interested.)
Consequence: To determine $\chi^{\prime}(G)$,

Fact: Most 3-regular graphs have edge chromatic number 3 .

Snarks

Definition. Another name for 3-regular is cubic.
Definition. A snark is a *bridgeless* cubic graph with edge chromatic number 4.

Example. The Petersen graph P is a snark. It is 3-regular. \checkmark
Let us prove that it can not be colored with three colors.
Assume you can color it with three colors. WLOG, assume $a b, a c, a d$.
Either Case 1: be and bi
or Case 2: be and bi.
Either Case 1a: ig and ij or Case 1b: ig and ij.

Snarks

Definition. Another name for 3 -regular is cubic.
Definition. A snark is a *bridgeless* cubic graph with edge chromatic number 4.
Example. The Petersen graph P is a snark. It is 3-regular. \checkmark
Let us prove that it can not be colored with three colors.
Assume you can color it with three colors. WLOG, assume $a b, a c, a d$.
Either Case 1: be and $b i$
or Case 2: be and bi.
Either Case 1a: ig and ij or Case 1b: ig and ij. Cases 2a, 2b

In all cases, it is not possible to edge color with 3 colors, so $\chi^{\prime}(G)=4$.

The edge chromatic number of complete graphs

Goal: Determine $\chi^{\prime}\left(K_{n}\right)$ for all n.
Vertex Degree Analysis: The degree of every vertex in K_{n} is \qquad .

Vizing's theorem implies that $\chi^{\prime}\left(K_{n}\right)=$ \qquad or \qquad .

If $\chi^{\prime}\left(K_{n}\right)=\ldots \quad$, then each vertex has an edge leaving of each color.
Question. How many red edges are there?
This is only an integer when:
So, the best we can expect is that $\left\{\begin{array}{l}\chi^{\prime}\left(K_{2 n}\right)= \\ \chi^{\prime}\left(K_{2 n-1}\right)=\end{array}\right.$

The edge chromatic number of complete graphs
Thm 2.2.3: $\quad \chi^{\prime}\left(K_{2 n}\right)=2 n-1 . \quad$ Proof. Use the "turning trick".
Label the vertices of $K_{2 n}$
$0,1, \ldots, 2 n-2, x$.
Connect 0 with x,
Connect 1 with $2 n-2$,

Connect $n-1$ with n.
Now turn the inside edges.
And do it again. (and again, ...)
Claim: Each turn, new edges are used.

Proof: Each of the edges is a different "circular length".
Vertices are at circular distance $1,3,5, \ldots, 4,2$ from each other, and x is connected to a different vertex each time.

The edge chromatic number of complete graphs

Theorem 2.2.4: $\quad \chi^{\prime}\left(K_{2 n-1}\right)=2 n-1$.
This construction also gives a way to edge color $K_{2 n-1}$ with $2 n-1$ colors-simply delete vertex x !

This is related to the mathematics of combinatorial designs.
Question. Is it possible for six tennis players to play one match per day in a five-day tournament in such a way that each player plays each other player once?

Day 1	$0 x$	14	23
Day 2	$1 x$	20	34
Day 3	$2 x$	31	40
Day 4	$3 x$	42	01
Day 5	$4 x$	03	12

Theorem 2.2.3 proves there is such a tournament for all even numbers.

