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Edge Coloring

We can also color the edges of a graph.

Definition. An edge coloring of a graph G is a labeling of the edges
of G with colors. [Technically, a function f : E (G ) → {1, 2, . . . , l}.]

Definition. A proper edge coloring of G is an edge coloring of G
such that no two adjacent edges are colored the same.

Example. Cube graph (□3):

We can properly edge color □3 with colors and no fewer.

Definition. The minimum number of colors necessary to properly
edge color a graph G is called the edge chromatic number of G ,
denoted χ′(G ) = “chi prime”.
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Edge coloring theorems

Question. What is a natural lower bound for χ′(G )?

Thm 2.2.1: For any graph G , χ′(G ) ≥ .

Thm 2.2.2: Vizing’s Theorem:
For every graph G , χ′(G ) equals either ∆(G ) or ∆(G ) + 1.

Proof. Hard. (See reference [24] if interested.)

Consequence: To determine χ′(G ),

Fact: Most 3-regular graphs have edge chromatic number 3.
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Snarks

Definition. Another name for 3-regular is cubic.

Definition. A snark is a *bridgeless* cubic graph with edge
chromatic number 4.

Example. The Petersen graph P is a snark.

It is 3-regular. ✓
Let us prove that it can not be colored with three colors.
Assume you can color it with three colors. WLOG, assume ab, ac , ad .

Either Case 1: be and bi or Case 2: be and bi .

Either Case 1a: ig and ij or Case 1b: ig and ij .
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In all cases, it is not possible to edge color with 3 colors, so χ′(G ) = 4.
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The edge chromatic number of complete graphs

Goal: Determine χ′(Kn) for all n.

Vertex Degree Analysis: The degree of every vertex in Kn is .

Vizing’s theorem implies that χ′(Kn) = or .

If χ′(Kn) = , then each vertex has an edge leaving of each color.

Question. How many red edges are there?

This is only an integer when:

So, the best we can expect is that

{
χ′(K2n) =

χ′(K2n−1) =
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The edge chromatic number of complete graphs

Thm 2.2.3: χ′(K2n) = 2n − 1.

Proof. Use the “turning trick”.
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Label the vertices of K2n

0, 1, . . . , 2n − 2, x .

Connect 0 with x ,
Connect 1 with 2n − 2,

...

Connect n − 1 with n.

Now turn the inside edges.
And do it again. (and again, . . .)

Claim: Each turn, new edges are used.

Proof: Each of the edges is a different “circular length”.
Vertices are at circular distance 1, 3, 5, . . ., 4, 2 from each other,
and x is connected to a different vertex each time.
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The edge chromatic number of complete graphs

Theorem 2.2.4: χ′(K2n−1) = 2n − 1.

This construction also gives a way to edge color K2n−1 with 2n− 1
colors—simply delete vertex x!

This is related to the mathematics of combinatorial designs.

Question. Is it possible for six tennis players to play one match per
day in a five-day tournament in such a way that each player plays
each other player once?

4

3 2

1

0 x

Day 1 0x 14 23
Day 2 1x 20 34
Day 3 2x 31 40
Day 4 3x 42 01
Day 5 4x 03 12

Theorem 2.2.3 proves there is such a tournament for all even numbers.
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