We can also color the edges of a graph.

Definition. An **edge coloring** of a graph *G* is a labeling of the edges of *G* with colors. [Technically, a function $f : E(G) \rightarrow \{1, 2, ..., l\}$.]

We can also color the edges of a graph.

Definition. An **edge coloring** of a graph G is a labeling of the edges of G with colors. [Technically, a function $f : E(G) \rightarrow \{1, 2, ..., l\}$.]

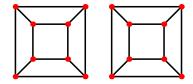
Definition. A **proper** edge coloring of G is an edge coloring of G such that no two *adjacent edges* are colored the same.

We can also color the edges of a graph.

Definition. An **edge coloring** of a graph *G* is a labeling of the edges of *G* with colors. [Technically, a function $f : E(G) \rightarrow \{1, 2, ..., l\}$.]

Definition. A **proper** edge coloring of G is an edge coloring of G such that no two *adjacent edges* are colored the same.

Example. Cube graph (\Box_3) :



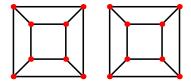
We can properly edge color \Box_3 with _____ colors and no fewer.

We can also color the edges of a graph.

Definition. An **edge coloring** of a graph *G* is a labeling of the edges of *G* with colors. [Technically, a function $f : E(G) \rightarrow \{1, 2, ..., l\}$.]

Definition. A **proper** edge coloring of G is an edge coloring of G such that no two *adjacent edges* are colored the same.

Example. Cube graph (\Box_3) :



We can properly edge color \Box_3 with _____ colors and no fewer.

Definition. The minimum number of colors necessary to properly edge color a graph G is called the **edge chromatic number** of G, denoted $\chi'(G) =$ "chi prime".

Question. What is a natural lower bound for $\chi'(G)$?

Question. What is a natural lower bound for $\chi'(G)$?

Thm 2.2.1: For any graph G, $\chi'(G) \geq \ldots$.

Question. What is a natural lower bound for $\chi'(G)$?

Thm 2.2.1: For any graph G, $\chi'(G) \geq \ldots$.

Thm 2.2.2: Vizing's Theorem: For every graph *G*, $\chi'(G)$ equals either $\Delta(G)$ or $\Delta(G) + 1$.

Question. What is a natural lower bound for $\chi'(G)$?

Thm 2.2.1: For any graph G, $\chi'(G) \geq$ _____.

Thm 2.2.2: Vizing's Theorem: For every graph *G*, $\chi'(G)$ equals either $\Delta(G)$ or $\Delta(G) + 1$. *Proof.* Hard. (See reference [24] if interested.)

Question. What is a natural lower bound for $\chi'(G)$?

Thm 2.2.1: For any graph G, $\chi'(G) \geq$ _____.

Thm 2.2.2: Vizing's Theorem: For every graph *G*, $\chi'(G)$ equals either $\Delta(G)$ or $\Delta(G) + 1$. *Proof.* Hard. (See reference [24] if interested.)

Consequence: To determine $\chi'(G)$,

Question. What is a natural lower bound for $\chi'(G)$?

Thm 2.2.1: For any graph *G*, $\chi'(G) \ge$ ____.

Thm 2.2.2: Vizing's Theorem: For every graph *G*, $\chi'(G)$ equals either $\Delta(G)$ or $\Delta(G) + 1$. *Proof.* Hard. (See reference [24] if interested.) *Consequence:* To determine $\chi'(G)$,

Fact: Most 3-regular graphs have edge chromatic number 3.

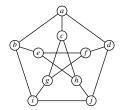
Definition. Another name for 3-regular is **cubic**.

Definition. A **snark** is a *bridgeless* cubic graph with edge chromatic number 4.

Definition. Another name for 3-regular is **cubic**.

Definition. A **snark** is a *bridgeless* cubic graph with edge chromatic number 4.

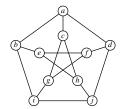
Example. The Petersen graph *P* is a snark.



Definition. Another name for 3-regular is **cubic**.

Definition. A **snark** is a *bridgeless* cubic graph with edge chromatic number 4.

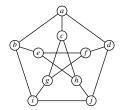
Example. The Petersen graph P is a snark. It is 3-regular. \checkmark



Definition. Another name for 3-regular is **cubic**.

Definition. A **snark** is a *bridgeless* cubic graph with edge chromatic number 4.

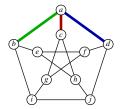
Example. The Petersen graph P is a snark. It is 3-regular. \checkmark Let us prove that it can not be colored with three colors.



Definition. Another name for 3-regular is **cubic**.

Definition. A **snark** is a *bridgeless* cubic graph with edge chromatic number 4.

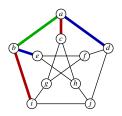
Example. The Petersen graph P is a snark. It is 3-regular. \checkmark Let us prove that it can not be colored with three colors. Assume you can color it with three colors. WLOG, assume *ab*, *ac*, *ad*.



Definition. Another name for 3-regular is **cubic**.

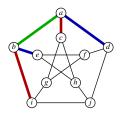
Definition. A **snark** is a *bridgeless* cubic graph with edge chromatic number 4.

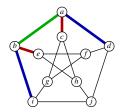
Example. The Petersen graph P is a snark. It is 3-regular. \checkmark Let us prove that it can not be colored with three colors. Assume you can color it with three colors. WLOG, assume *ab*, *ac*, *ad*. Either **Case 1**: *be* and *bi*



Definition. Another name for 3-regular is **cubic**.

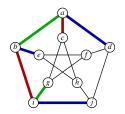
Definition. A **snark** is a *bridgeless* cubic graph with edge chromatic number 4.

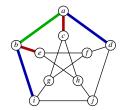




Definition. Another name for 3-regular is **cubic**.

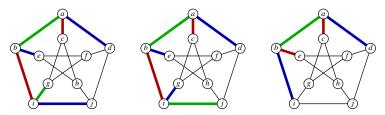
Definition. A **snark** is a *bridgeless* cubic graph with edge chromatic number 4.





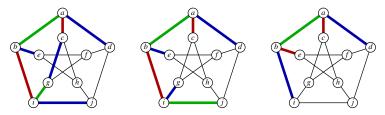
Definition. Another name for 3-regular is **cubic**.

Definition. A **snark** is a *bridgeless* cubic graph with edge chromatic number 4.



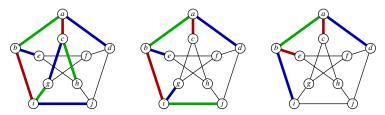
Definition. Another name for 3-regular is **cubic**.

Definition. A **snark** is a *bridgeless* cubic graph with edge chromatic number 4.



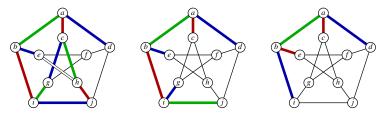
Definition. Another name for 3-regular is **cubic**.

Definition. A **snark** is a *bridgeless* cubic graph with edge chromatic number 4.



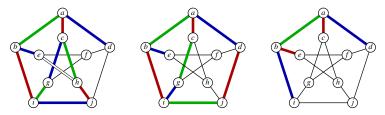
Definition. Another name for 3-regular is **cubic**.

Definition. A **snark** is a *bridgeless* cubic graph with edge chromatic number 4.



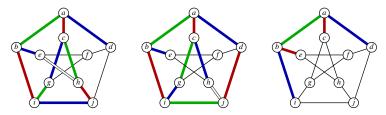
Definition. Another name for 3-regular is **cubic**.

Definition. A **snark** is a *bridgeless* cubic graph with edge chromatic number 4.



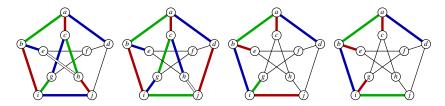
Definition. Another name for 3-regular is **cubic**.

Definition. A **snark** is a *bridgeless* cubic graph with edge chromatic number 4.



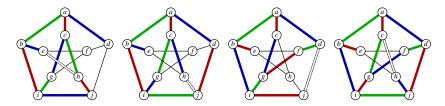
Definition. Another name for 3-regular is **cubic**.

Definition. A **snark** is a *bridgeless* cubic graph with edge chromatic number 4.



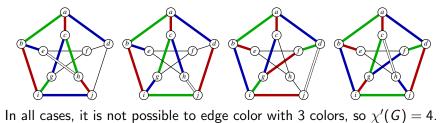
Definition. Another name for 3-regular is **cubic**.

Definition. A **snark** is a *bridgeless* cubic graph with edge chromatic number 4.



Definition. Another name for 3-regular is **cubic**.

Definition. A **snark** is a *bridgeless* cubic graph with edge chromatic number 4.



Goal: Determine $\chi'(K_n)$ for all *n*.

Goal: Determine $\chi'(K_n)$ for all *n*.

Vertex Degree Analysis: The degree of every vertex in K_n is _____.

Goal: Determine $\chi'(K_n)$ for all *n*.

Vertex Degree Analysis: The degree of every vertex in K_n is _____.

Vizing's theorem implies that $\chi'(K_n) = _$ or $_$.

If $\chi'(K_n) =$ ____, then each vertex has an edge leaving of each color.

Goal: Determine $\chi'(K_n)$ for all *n*.

Vertex Degree Analysis: The degree of every vertex in K_n is _____. Vizing's theorem implies that $\chi'(K_n) = _$ ____ or _____.

If $\chi'(K_n) =$ ____, then each vertex has an edge leaving of each color.

Question. How many red edges are there?

Goal: Determine $\chi'(K_n)$ for all *n*. Vertex Degree Analysis: The degree of every vertex in K_n is _____. Vizing's theorem implies that $\chi'(K_n) =$ _____ or _____. If $\chi'(K_n) =$ _____, then each vertex has an edge leaving of each color.

Question. How many red edges are there?

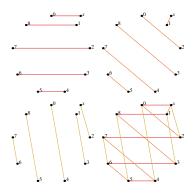
This is only an integer when:

So, the best we can expect is that $\begin{cases} \chi'(K_{2n}) = \\ \chi'(K_{2n-1}) = \end{cases}$

Thm 2.2.3: $\chi'(K_{2n}) = 2n - 1.$

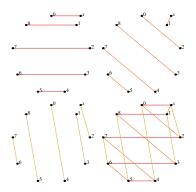
Thm 2.2.3:
$$\chi'(K_{2n}) = 2n - 1$$
.
Label the vertices of K_{2n}
 $0, 1, \dots, 2n - 2, x$.
Connect 0 with x ,
Connect 1 with $2n - 2$,
 \vdots
Connect $n - 1$ with n .

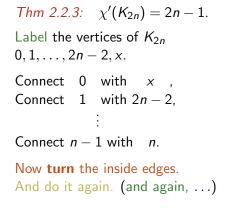
1111

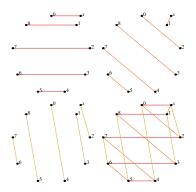


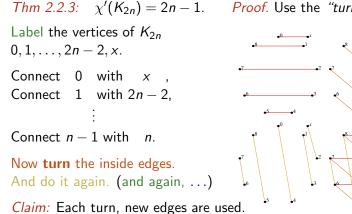
Thm 2.2.3:
$$\chi'(K_{2n}) = 2n - 1$$
.
Label the vertices of K_{2n}
 $0, 1, \dots, 2n - 2, x$.
Connect 0 with x ,
Connect 1 with $2n - 2$,
 \vdots
Connect $n - 1$ with n .
Now **turn** the inside edges.

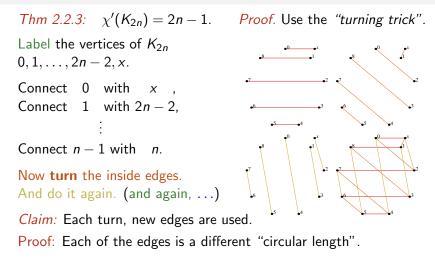
1111

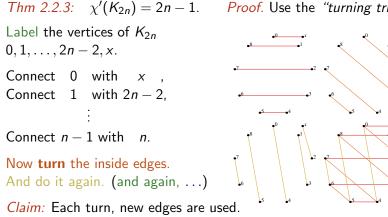












Proof: Each of the edges is a different "circular length". Vertices are at circular distance 1, 3, 5, ..., 4, 2 from each other, and x is connected to a different vertex each time.

Theorem 2.2.4: $\chi'(K_{2n-1}) = 2n - 1.$

Theorem 2.2.4: $\chi'(K_{2n-1}) = 2n - 1.$

This construction also gives a way to edge color K_{2n-1} with 2n-1 colors—simply delete vertex x!

Theorem 2.2.4: $\chi'(K_{2n-1}) = 2n - 1.$

This construction also gives a way to edge color K_{2n-1} with 2n-1 colors—simply delete vertex x!

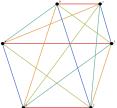
This is related to the mathematics of **combinatorial designs**. *Question*. Is it possible for six tennis players to play one match per day in a five-day tournament in such a way that each player plays each other player once?

Theorem 2.2.4: $\chi'(K_{2n-1}) = 2n - 1.$

This construction also gives a way to edge color K_{2n-1} with 2n-1 colors—simply delete vertex x!

This is related to the mathematics of **combinatorial designs**. *Question*. Is it possible for six tennis players to play one match per day in a five-day tournament in such a way that each player plays each other player once?

Day 1	0x	14	23
Day 2	1x	20	34
Day 3	2x	31	40
Day 4	3x	42	01
Day 5	4x	03	12



Theorem 2.2.3 proves there is such a tournament for all even numbers.