Hamiltonian Cycles

Definition. A Hamiltonian cycle C in a graph G is a cycle containing every vertex of G.

Hamiltonian Cycles

Definition. A Hamiltonian cycle C in a graph G is a cycle containing every vertex of G.

Definition. A Hamiltonian path P in a graph G is a path containing every vertex of G.

* Important: Paths and cycles do not use any vertex or edge twice.

Hamiltonian Cycles

Definition. A Hamiltonian cycle C in a graph G is a cycle containing every vertex of G.

Definition. A Hamiltonian path P in a graph G is a path containing every vertex of G.
\star Important: Paths and cycles do not use any vertex or edge twice.
Theorem: If G has a Ham'n cycle, then G has a Ham'n path. Proof:

Hamiltonian Cycles

Definition. A Hamiltonian cycle C in a graph G is a cycle containing every vertex of G.

Definition. A Hamiltonian path P in a graph G is a path containing every vertex of G.

* Important: Paths and cycles do not use any vertex or edge twice.

Theorem: If G has a Ham'n cycle, then G has a Ham'n path. Proof:

An arbitrary graph may or may not contain a Hamiltonian cycle/path. This is very hard to determine in general!

Hamiltonian Cycles

Theorem 2.3.5: A snark has no Hamiltonian cycle.

Hamiltonian Cycles

Theorem 2.3.5: A snark has no Hamiltonian cycle.
Fact: A snark has an even number of vertices. Why?

Hamiltonian Cycles

Theorem 2.3.5: A snark has no Hamiltonian cycle.
Fact: A snark has an even number of vertices. Why?
Proof: Suppose that G is a snark that contains a Hamiltonian cycle C, visiting each vertex once.

When you remove C...

Hamiltonian Cycles

Theorem 2.3.5: A snark has no Hamiltonian cycle.
Fact: A snark has an even number of vertices. Why?
Proof: Suppose that G is a snark that contains a Hamiltonian cycle C, visiting each vertex once.

When you remove C...

Now color G strategically ...

Hamiltonian Cycles

Theorem 2.3.5: A snark has no Hamiltonian cycle.
Fact: A snark has an even number of vertices. Why?
Proof: Suppose that G is a snark that contains a Hamiltonian cycle C, visiting each vertex once.

When you remove C...

Now color G strategically ...

Careful: The converse is not true!
There exist cubic graphs w/o Ham'n cycle and that are not snarks.
Example: Book Figure 2.3.4.

Knight's Tours

In chess, a knight ($)$) is a piece that moves in an " L ": two spaces over and one space to the side.

Knight's Tours

In chess, a knight (0) is a piece that moves in an " L ": two spaces over and one space to the side.

Question. Is it possible for a knight to start on some square and, by a series of valid knight moves, visit each square on an 8×8 chessboard once?

Knight's Tours

In chess, a knight (0) is a piece that moves in an " L ": two spaces over and one space to the side.

Question. Is it possible for a knight to start on some square and, by a series of valid knight moves, visit each square on an 8×8 chessboard once? (How about return to where it started?)

Knight's Tours

In chess, a knight (0) is a piece that moves in an "L" : two spaces over and one space to the side.

Question. Is it possible for a knight to start on some square and, by a series of valid knight moves, visit each square on an 8×8 chessboard once? (How about return to where it started?)

Definition. A path of the first kind is called an open knight's tour. A cycle of the second kind is called a closed knight's tour.

8×8 Knight's Tour

8×8 Knight's Tour

Question. Are there any knight's tours on an $m \times n$ chessboard?

The Graph Theory of Knight's Tours

For any board we can draw a corresponding knight move graph: Create a vertex for every square on the board and create edges between vertices that are a knight's move away.

An open/closed knight's tour on the board

The Graph Theory of Knight's Tours

For any board we can draw a corresponding knight move graph:
Create a vertex for every square on the board and create edges between vertices that are a knight's move away.

An open/closed knight's \qquad tour on the board

A knight move always alternates between white and black squares. Therefore, a knight move graph is always \qquad .

Knight's Tour Theorem

Theorem. An $m \times n$ chessboard with $m \leq n$ has a closed knight's tour unless one or more of these conditions holds:

1. m and n are both odd.
2. $m=1,2$, or 4 .
3. $m=3$ and $n=4,6$, or 8 .

Knight's Tour Theorem

Theorem. An $m \times n$ chessboard with $m \leq n$ has a closed knight's tour unless one or more of these conditions holds:

1. m and n are both odd.
2. $m=1,2$, or 4 .
3. $m=3$ and $n=4,6$, or 8 .
"Proof" We will only show that it is impossible in these cases.
Case 1. When m and n are both odd,

Knight's Tour Theorem

Theorem. An $m \times n$ chessboard with $m \leq n$ has a closed knight's tour unless one or more of these conditions holds:

1. m and n are both odd.
2. $m=1,2$, or 4 .
3. $m=3$ and $n=4,6$, or 8 .
"Proof" We will only show that it is impossible in these cases.
Case 1. When m and n are both odd,

Case 2. When $m=1$ or 2 , the knight move graph is not connected.

Knight's Tour Theorem

Case 2. When $m=4$, draw the knight move graph G.

0	0	0	Q	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Suppose there exists a Hamiltonian cycle C in the graph G.

Knight's Tour Theorem

Case 2. When $m=4$, draw the knight move graph G.

0	0	0	Q	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Suppose there exists a Hamiltonian cycle C in the graph G. Since G is bipartite, C must alternate between white and black vertices.

Knight's Tour Theorem

Case 2. When $m=4$, draw the knight move graph G.

0	0	0	Q	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Suppose there exists a Hamiltonian cycle C in the graph G. Since G is bipartite, C must alternate between white and black vertices.

In addition, tint the outer rows of G red and the inner rows blue. In C, every red vertex is only adjacent to blue vertices.

Knight's Tour Theorem

Case 2. When $m=4$, draw the knight move graph G.

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Suppose there exists a Hamiltonian cycle C in the graph G. Since G is bipartite, C must alternate between white and black vertices.

In addition, tint the outer rows of G red and the inner rows blue. In C, every red vertex is only adjacent to blue vertices.

Since there are the same number of red and blue vertices, C must also alternate between red and blue vertices.

Knight's Tour Theorem

Case 2. When $m=4$, draw the knight move graph G.

0	0	0	R	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Suppose there exists a Hamiltonian cycle C in the graph G. Since G is bipartite, C must alternate between white and black vertices.

In addition, tint the outer rows of G red and the inner rows blue. In C, every red vertex is only adjacent to blue vertices.

Since there are the same number of red and blue vertices, C must also alternate between red and blue vertices.

Therefore: All vertices of C are "white and red" or "black and blue".

Knight's Tour Theorem

Case 3. 3×4 is covered by Case 2. Consider the 3×6 board:

Assume that there is a Hamiltonian cycle C in G.

Knight's Tour Theorem

Case 3. 3×4 is covered by Case 2. Consider the 3×6 board:

Assume that there is a Hamiltonian cycle C in G.
C visits every vertex v and uses two of v 's incident edges.
If $\operatorname{deg}_{G}(v)=2$, then both of v 's incident edges in G are in C.

Knight's Tour Theorem

Case 3. 3×4 is covered by Case 2. Consider the 3×6 board:

Assume that there is a Hamiltonian cycle C in G.
C visits every vertex v and uses two of v 's incident edges.
If $\operatorname{deg}_{G}(v)=2$, then both of v 's incident edges in G are in C.
Draw all these "forced edges" that must be in C.

Knight's Tour Theorem

Case 3. 3×4 is covered by Case 2. Consider the 3×6 board:

Assume that there is a Hamiltonian cycle C in G.
C visits every vertex v and uses two of v 's incident edges.
If $\operatorname{deg}_{G}(v)=2$, then both of v 's incident edges in G are in C.
Draw all these "forced edges" that must be in C.
The forced edges include four edges that form a cycle C^{\prime}.

Knight's Tour Theorem

Case 3. 3×4 is covered by Case 2. Consider the 3×6 board:

Assume that there is a Hamiltonian cycle C in G.
C visits every vertex v and uses two of v 's incident edges.
If $\operatorname{deg}_{G}(v)=2$, then both of v 's incident edges in G are in C.
Draw all these "forced edges" that must be in C.
The forced edges include four edges that form a cycle C^{\prime}.
This cycle C^{\prime} cannot be a subgraph of any Hamiltonian cycle! $\Rightarrow \Leftarrow$

Knight's Tour Theorem

Case 3. 3×4 is covered by Case 2. Consider the 3×6 board:

Assume that there is a Hamiltonian cycle C in G.
C visits every vertex v and uses two of v 's incident edges.
If $\operatorname{deg}_{G}(v)=2$, then both of v 's incident edges in G are in C.
Draw all these "forced edges" that must be in C.
The forced edges include four edges that form a cycle C^{\prime}.
This cycle C^{\prime} cannot be a subgraph of any Hamiltonian cycle! $\Rightarrow \Leftarrow$
The 3×8 case is similar, and for you to explore.
See also: "Knight's Tours on a Torus", by J. J. Watkins, R. L. Hoenigman

