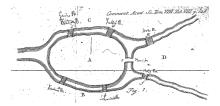
The Origins of Graph Theory

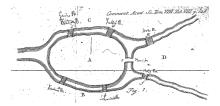
City of Königsberg in 1736



Question. Is it possible to start somewhere, cross all seven bridges exactly once, and return to where you started?

The Origins of Graph Theory

City of Königsberg in 1736



Question. Is it possible to start somewhere, cross all seven bridges exactly once, and return to where you started?

We can model this with a graph:

Equiv. Question. Can we draw this graph without lifting our pencil?

This is not a graph—it's a pseudograph. For this section, we **allow** *multiple edges* and *loops*.

This is not a graph—it's a pseudograph. For this section, we allow multiple edges and loops.

Types	or warks	in pseu	uographs:
Repeat	Repeat	Open	Closed
Vertices?	Edges?	$A_1 \neq A_n$	$A_1 = A_n$
No	No	path	cycle

Types of "walks" in provide graphs

This is not a graph—it's a pseudograph. For this section, we **allow** *multiple edges* and *loops*.

Types	UI Walks	in pseud	uographis.
Repeat	Repeat	Open	Closed
Vertices?	Edges?	$A_1 \neq A_n$	$A_1 = A_n$
No	No	path	cycle
Yes	No	trail	circuit

Types of "walks" in pseudographs:

This is not a graph—it's a pseudograph. For this section, we **allow** *multiple edges* and *loops*.

Repeat Repeat Open Closed Edges? Vertices? $A_1 \neq A_n$ $A_1 = A_n$ cycle No No path Yes No trail circuit Yes Yes walk closed walk

Types of "walks" in pseudographs:

This is not a graph—it's a pseudograph. For this section, we **allow** *multiple edges* and *loops*.

Repeat	Repeat	Open	Closed
Vertices?	Edges?	$A_1 \neq A_n$	$A_1 = A_n$
No	No	path	cycle
Yes	No	trail	circuit
Yes	Yes	walk	closed walk

Types of "walks" in pseudographs:

We need to update a few of our definitions.

This is not a graph—it's a pseudograph. For this section, we **allow** *multiple edges* and *loops*.

Repeat	Repeat	Open	Closed
Vertices?	Edges?	$A_1 \neq A_n$	$A_1 = A_n$
No	No	path	cycle
Yes	No	trail	circuit
Yes	Yes	walk	closed walk

Types of "walks" in pseudographs:

We need to update a few of our definitions.

Definition. The length of a "walk" is the number of edges involved.

This is not a graph—it's a pseudograph. For this section, we **allow** *multiple edges* and *loops*.

Repeat	Repeat	Open	Closed
Vertices?	Edges?	$A_1 \neq A_n$	$A_1 = A_n$
No	No	path	cycle
Yes	No	trail	circuit
Yes	Yes	walk	closed walk

Types of "walks" in pseudographs:

We need to update a few of our definitions.

Definition. The **length** of a "walk" is the number of *edges* involved.

Remark. In a simple graph, the smallest cycle possible is length 3. In a pseudograph, there may exist cycles of length _____.

This is not a graph—it's a pseudograph. For this section, we **allow** *multiple edges* and *loops*.

Repeat	Repeat	Open	Closed
Vertices?	Edges?	$A_1 \neq A_n$	$A_1 = A_n$
No	No	path	cycle
Yes	No	trail	circuit
Yes	Yes	walk	closed walk

Types of "walks" in pseudographs:

We need to update a few of our definitions.

Definition. The **length** of a "walk" is the number of *edges* involved.

Remark. In a simple graph, the smallest cycle possible is length 3. In a pseudograph, there may exist cycles of length _____.

Definition. The **degree** of a vertex *A* is the number of edges incident with *A*; loops count twice!

Definitions.

An Eulerian circuit C in G is a circuit containing every edge of G. An Eulerian trail T in G is a trail containing every edge of G.

Definitions.

An Eulerian circuit C in G is a circuit containing every edge of G. An Eulerian trail T in G is a trail containing every edge of G.

Definitions.

An Eulerian circuit C in G is a circuit containing every edge of G. An Eulerian trail T in G is a trail containing every edge of G.

T or F: A graph with an Eulerian circuit has an Eulerian trail.

Definitions.

An **Eulerian circuit** C in G is a circuit containing every edge of G. An **Eulerian trail** T in G is a trail containing every edge of G.

T or F: A graph with an Eulerian circuit has an Eulerian trail.

The Königsberg bridge problem Is there an Eulerian circuit in the corresponding pseudograph?

There is a simple way to determine if a graph has an Eulerian circuit.

Theorems 3.1.1 and 3.1.2. Let G be a pseudograph that is connected^{*} except possibly for isolated vertices.

There is a simple way to determine if a graph has an Eulerian circuit.

Theorems 3.1.1 and 3.1.2. Let G be a pseudograph that is connected^{*} except possibly for isolated vertices.

G has an Eulerian circuit \iff the degree of every vertex is even.

There is a simple way to determine if a graph has an Eulerian circuit.

Theorems 3.1.1 and 3.1.2. Let G be a pseudograph that is connected^{*} except possibly for isolated vertices.

G has an Eulerian circuit \iff the degree of every vertex is even.

Question. What about the Königsberg bridge pseudograph?

There is a simple way to determine if a graph has an Eulerian circuit.

Theorems 3.1.1 and 3.1.2. Let G be a pseudograph that is connected^{*} except possibly for isolated vertices.

G has an Eulerian circuit \iff the degree of every vertex is even.

Question. What about the Königsberg bridge pseudograph?

 (\Rightarrow) Euler, 1736. Given an Eulerian circuit *C*, each time a vertex appears in the circuit, there must be an "in edge" and an "out edge", so the total degree of each vertex must be even.

There is a simple way to determine if a graph has an Eulerian circuit.

Theorems 3.1.1 and 3.1.2. Let G be a pseudograph that is connected^{*} except possibly for isolated vertices.

G has an Eulerian circuit \iff the degree of every vertex is even.

Question. What about the Königsberg bridge pseudograph?

 (\Rightarrow) Euler, 1736. Given an Eulerian circuit *C*, each time a vertex appears in the circuit, there must be an "in edge" and an "out edge", so the total degree of each vertex must be even.

(\Leftarrow) Hierholzer, 1873. This is harder; we need the following lemma.

Lemma 3.1.3. If the degree of every vertex in a pseudograph is even, then every non-isolated vertex lies in some circuit in G.

Lemma 3.1.3. If the degree of every vertex in a pseudograph is even, then every non-isolated vertex lies in some circuit in G.

Proof. Build a trail starting at any non-isolated vertex A in G.

Lemma 3.1.3. If the degree of every vertex in a pseudograph is even, then every non-isolated vertex lies in some circuit in G.

Proof. Build a trail starting at any non-isolated vertex A in G.

When the trail arrives at a vertex B, what can we say about the number of edges incident to B not yet traversed by the trail?

So there is some edge to follow out of B; take it.

Lemma 3.1.3. If the degree of every vertex in a pseudograph is even, then every non-isolated vertex lies in some circuit in G.

Proof. Build a trail starting at any non-isolated vertex A in G.

When the trail arrives at a vertex B, what can we say about the number of edges incident to B not yet traversed by the trail?

So there is some edge to follow out of B; take it.

The trail must eventually return to A, giving us a circuit.

Every vertex in G has even degree \Rightarrow G has an Eulerian circuit

Every vertex in G has even degree \Rightarrow G has an Eulerian circuit

Find the longest circuit C in G.

Every vertex in G has even degree \Rightarrow G has an Eulerian circuit

Find the longest circuit C in G. If C uses every edge, we are done.

Every vertex in G has even degree \Rightarrow G has an Eulerian circuit

Find the longest circuit C in G. If C uses every edge, we are done. \mathbb{M}

Every vertex in G has even degree \Rightarrow G has an Eulerian circuit

Find the longest circuit *C* in *G*. If *C* uses every edge, we are done. \mathbb{P} Otherwise, it doesn't; we will aim to contradict the maximality of *C*:

Every vertex in G has even degree \Rightarrow G has an Eulerian circuit

Find the longest circuit C in G. If C uses every edge, we are done. Otherwise, it doesn't; we will aim to contradict the maximality of C: Create H from G by deleting all edges of C & any isolated vertices. Then H is a pseudograph where

Every vertex in G has even degree \Rightarrow G has an Eulerian circuit

Find the longest circuit C in G. If C uses every edge, we are done. Otherwise, it doesn't; we will aim to contradict the maximality of C: Create H from G by deleting all edges of C & any isolated vertices. Then H is a pseudograph where

C and H must share a vertex A because _

Every vertex in G has even degree \Rightarrow G has an Eulerian circuit

Find the longest circuit C in G. If C uses every edge, we are done. Otherwise, it doesn't; we will aim to contradict the maximality of C: Create H from G by deleting all edges of C & any isolated vertices. Then H is a pseudograph where

C and *H* must share a vertex *A* because ____ Write *C* as $C = \cdots e_1 A e_2 \cdots$.

Every vertex in G has even degree \Rightarrow G has an Eulerian circuit

Find the longest circuit C in G. If C uses every edge, we are done. Otherwise, it doesn't; we will aim to contradict the maximality of C: Create H from G by deleting all edges of C & any isolated vertices. Then H is a pseudograph where

C and *H* must share a vertex *A* because ____ Write *C* as $C = \cdots e_1 A e_2 \cdots$.

Find a circuit D in H through A. (Why?)

Every vertex in G has even degree \Rightarrow G has an Eulerian circuit

Find the longest circuit C in G. If C uses every edge, we are done. Otherwise, it doesn't; we will aim to contradict the maximality of C: Create H from G by deleting all edges of C & any isolated vertices. Then H is a pseudograph where

C and H must share a vertex A because _____

Write C as $C = \cdots e_1 A e_2 \cdots$.

Find a circuit D in H through A. (Why?)

Write D as $D = \cdots f_1 A f_2 \cdots$. No edges of D repeat nor are they in C.

Every vertex in G has even degree \Rightarrow G has an Eulerian circuit

Find the longest circuit C in G. If C uses every edge, we are done. Otherwise, it doesn't; we will aim to contradict the maximality of C: Create H from G by deleting all edges of C & any isolated vertices. Then H is a pseudograph where

C and H must share a vertex A because _____

Write *C* as $C = \cdots e_1 A e_2 \cdots$.

Find a circuit D in H through A. (Why?)

Write D as $D = \cdots f_1 A f_2 \cdots$. No edges of D repeat nor are they in C.

Define a new circuit $C' = \cdots e_1 A f_2 \cdots f_1 A e_2 \cdots$.

Every vertex in G has even degree \Rightarrow G has an Eulerian circuit

Find the longest circuit C in G. If C uses every edge, we are done. Otherwise, it doesn't; we will aim to contradict the maximality of C: Create H from G by deleting all edges of C & any isolated vertices. Then H is a pseudograph where

C and *H* must share a vertex *A* because _____ Write *C* as $C = \cdots e_1 A e_2 \cdots$.

Find a circuit D in H through A. (Why?)

Write D as $D = \cdots f_1 A f_2 \cdots$. No edges of D repeat nor are they in C.

Define a new circuit $C' = \cdots = e_1 A f_2 \cdots f_1 A e_2 \cdots$.

C' is a longer circuit in G than C, contradicting C's maximality.

Every vertex in G has even degree \Rightarrow G has an Eulerian circuit

Find the longest circuit C in G. If C uses every edge, we are done. Otherwise, it doesn't; we will aim to contradict the maximality of C: Create H from G by deleting all edges of C & any isolated vertices. Then H is a pseudograph where

C and *H* must share a vertex *A* because _____ Write *C* as $C = \cdots e_1 A e_2 \cdots$.

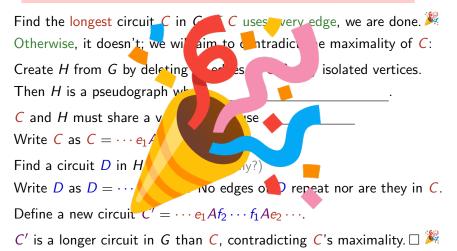
Find a circuit D in H through A. (Why?)

Write D as $D = \cdots f_1 A f_2 \cdots$. No edges of D repeat nor are they in C.

Define a new circuit $C' = \cdots = e_1 A f_2 \cdots f_1 A e_2 \cdots$.

C' is a longer circuit in G than C, contradicting C's maximality. \Box

Every vertex in G has even degree \Rightarrow G has an Eulerian circuit



Theorem 3.1.6. Let G be a connected^{*} pseudograph. Then,

G has an Eulerian trail \Leftrightarrow G has exactly two vertices of odd degree.

Theorem 3.1.6. Let G be a connected^{*} pseudograph. Then,

G has an Eulerian trail \Leftrightarrow G has exactly two vertices of odd degree.

Proof. Let x and y be the two vertices of odd degree.

Add edge xy to G. Now G + xy is a pseudograph

Theorem 3.1.6. Let G be a connected^{*} pseudograph. Then,

G has an Eulerian trail \Leftrightarrow G has exactly two vertices of odd degree.

Proof. Let x and y be the two vertices of odd degree.

Add edge xy to G.

Now G + xy is a pseudograph

By Theorem 3.1.2, there exists an Eulerian circuit in G + xy.

Remove xy from the circuit and you have an Eulerian trail in G.

Theorem 3.1.6. Let G be a connected^{*} pseudograph. Then,

G has an Eulerian trail \Leftrightarrow G has exactly two vertices of odd degree.

Proof. Let x and y be the two vertices of odd degree.

Add edge xy to G.

Now G + xy is a pseudograph

By Theorem 3.1.2, there exists an Eulerian circuit in G + xy.

Remove xy from the circuit and you have an Eulerian trail in G.

Consequence. When drawing a picture without lifting your pencil, start and end at the vertices of odd degree!

