Definition. A directed graph (or digraph) is a graph G = (V, E), where every edge e = vw is directed from one vertex to another:

 $e: v \to w$ or $e: w \to v$.

Definition. A directed graph (or digraph) is a graph G = (V, E), where every edge e = vw is directed from one vertex to another:

$$e: v \to w$$
 or $e: w \to v$.

Remark. An edge $e: v \rightarrow w$ is different from $e': w \rightarrow v$ and a digraph including both is not considered to have multiple edges.

Definition. A directed graph (or digraph) is a graph G = (V, E), where every edge e = vw is directed from one vertex to another:

$$e: v \to w$$
 or $e: w \to v$.

Remark. An edge $e: v \rightarrow w$ is different from $e': w \rightarrow v$ and a digraph including both is not considered to have multiple edges.

Definition. The **in-degree** of a vertex v is the number of edges directed *toward* v.

Definition. The **out-degree** of a vertex v is the number of edges directed *away from* v.

Definition. A directed graph (or digraph) is a graph G = (V, E), where every edge e = vw is directed from one vertex to another:

$$e: v \to w$$
 or $e: w \to v$.

Remark. An edge $e: v \rightarrow w$ is different from $e': w \rightarrow v$ and a digraph including both is not considered to have multiple edges.

Definition. The **in-degree** of a vertex v is the number of edges directed *toward* v.

Definition. The **out-degree** of a vertex v is the number of edges directed away from v.

Important. Any **path** / **cycle** / **walk** in a digraph must respect the direction on every edge.

Definition. A directed graph (or digraph) is a graph G = (V, E), where every edge e = vw is directed from one vertex to another:

 $e: v \to w$ or $e: w \to v$.

Remark. An edge $e : v \to w$ is different from $e' : w \to v$ and a digraph including both is not considered to have multiple edges.

Definition. The **in-degree** of a vertex v is the number of edges directed *toward* v.

Definition. The **out-degree** of a vertex v is the number of edges directed *away from* v.

Important. Any **path** / **cycle** / **walk** in a digraph must respect the direction on every edge. *Definition.* A digraph is **strongly connected** if there is

a directed path from every vertex to every other vertex.

 e_1 e_2 e_3 e_4 e_5 e_6 e_6 e_6 e_6 e_6 e_6 e_6 e_7 e_6 e_7 e_6 e_7 e_7 e_8 e_8

Generalizations to directed graphs

Definition. A directed pseudograph allows loops and multiple edges.

Generalizations to directed graphs

Definition. A directed pseudograph allows loops and multiple edges. We can generalize Theorems 3.1.1 and 3.1.2 to directed pseudographs: Let G be a directed pseudograph that is strongly connected^{*}.

G has an Eulerian circuit \$ the in-degree of every vertex equals the out-degree of every vertex.

Definition. An alphabet is a set $\mathcal{A} = \{a_1, \ldots, a_k\}$. Definition. A sequence or word from \mathcal{A} is a succession

 $S = s_1 s_2 s_3 \cdots s_l$, where each $s_i \in A$; *l* is the **length** of *S*.

Definition. An **alphabet** is a set $\mathcal{A} = \{a_1, \dots, a_k\}$. Definition. A **sequence** or **word** from \mathcal{A} is a succession $S = s_1 s_2 s_3 \cdots s_l$, where each $s_i \in \mathcal{A}$; *l* is the **length** of *S*.

Definition. A sequence is called a **binary sequence** when $\mathcal{A} = \{0, 1\}$.

Definition. An **alphabet** is a set $\mathcal{A} = \{a_1, \ldots, a_k\}$. Definition. A **sequence** or **word** from \mathcal{A} is a succession $S = s_1 s_2 s_3 \cdots s_l$, where each $s_i \in \mathcal{A}$; *l* is the **length** of *S*.

Definition. A sequence is called a **binary sequence** when $\mathcal{A} = \{0, 1\}$. Definition. A **de Bruijn sequence** of order *n* on \mathcal{A} is word of length k^n in which every *n*-length word occurs as a consecutive subsequence.

Example. S = 0000110101111001 is a *binary* de Bruijn seq. of order 4.

Definition. An **alphabet** is a set $\mathcal{A} = \{a_1, \ldots, a_k\}$. *Definition.* A sequence or word from \mathcal{A} is a succession $S = s_1 s_2 s_3 \cdots s_l$, where each $s_i \in A$; *l* is the **length** of *S*. *Definition.* A sequence is called a **binary sequence** when $\mathcal{A} = \{0, 1\}$. *Definition.* A **de Bruijn sequence** of order *n* on \mathcal{A} is word of length k^n in which every *n*-length word occurs as a consecutive subsequence. *Example.* S = 0000110101111001 is a *binary* de Bruijn seq. of order 4. **EVERY** binary sequence of length 4 is present. (We allow cycling.)

0000	0010	0100	0110	1000	1010	1100	1110
0001	0011	0101	0111	1001	1011	1101	1111

Definition. An **alphabet** is a set $\mathcal{A} = \{a_1, \ldots, a_k\}$. *Definition.* A sequence or word from \mathcal{A} is a succession $S = s_1 s_2 s_3 \cdots s_l$, where each $s_i \in A$; *l* is the **length** of *S*. *Definition.* A sequence is called a **binary sequence** when $\mathcal{A} = \{0, 1\}$. *Definition.* A **de Bruijn sequence** of order *n* on \mathcal{A} is word of length k^n in which every *n*-length word occurs as a consecutive subsequence. *Example.* S = 0000110101111001 is a *binary* de Bruijn seq. of order 4. **EVERY** binary sequence of length 4 is present. (We allow cycling.) 0100 0110 1000 0000 0010 1010 1100 1110

0001 0011 0101 0111 1001 1011 1101 1111

This is the most compact way to represent these sixteen sequences.

Definition. An **alphabet** is a set $\mathcal{A} = \{a_1, \ldots, a_k\}$. *Definition.* A sequence or word from \mathcal{A} is a succession $S = s_1 s_2 s_3 \cdots s_l$, where each $s_i \in A$; *l* is the **length** of *S*. *Definition.* A sequence is called a **binary sequence** when $\mathcal{A} = \{0, 1\}$. *Definition.* A **de Bruijn sequence** of order *n* on \mathcal{A} is word of length k^n in which every *n*-length word occurs as a consecutive subsequence. *Example.* S = 0000110101111001 is a *binary* de Bruijn seq. of order 4. **EVERY** binary sequence of length 4 is present. (We allow cycling.) 0100 0110 1000 1010 1100 0000 0010 1110

0001 0011 0101 0111 1001 1011 1101 1111

This is the most compact way to represent these sixteen sequences.

Theorem. A de Bruijn sequence of order n on A always exists.

Definition. The **de Bruijn graph** of order *n* on the alphabet $\mathcal{A} = \{a_1, a_2, \dots, a_k\}$ is a directed pseudograph.

Definition. The **de Bruijn graph** of order non the alphabet $\mathcal{A} = \{a_1, a_2, \dots, a_k\}$ is a directed pseudograph. Its vertices are labeled by words of \mathcal{A} of length n - 1.

Definition. The **de Bruijn graph** of order non the alphabet $\mathcal{A} = \{a_1, a_2, \dots, a_k\}$ is a directed pseudograph. Its vertices are labeled by words of \mathcal{A} of length n - 1. Each vertex has k out-edges labeled by the letters of \mathcal{A} :

$$\boxed{b_1b_2\cdots b_{n-1}} \xrightarrow{a_i} \boxed{b_2\cdots b_{n-1}a_i}$$

(Remove the first letter and append a_i at the end.)

Definition. The **de Bruijn graph** of order non the alphabet $\mathcal{A} = \{a_1, a_2, \dots, a_k\}$ is a directed pseudograph. Its vertices are labeled by words of \mathcal{A} of length n - 1. Each vertex has k out-edges labeled by the letters of \mathcal{A} :

$$b_1b_2\cdots b_{n-1} \xrightarrow{a_i} b_2\cdots b_{n-1}a_i$$

(Remove the first letter and append a_i at the end.)

Examples.

Definition. The **de Bruijn graph** of order non the alphabet $\mathcal{A} = \{a_1, a_2, \dots, a_k\}$ is a directed pseudograph. Its vertices are labeled by words of \mathcal{A} of length n - 1. Each vertex has k out-edges labeled by the letters of \mathcal{A} :

$$b_1b_2\cdots b_{n-1} \xrightarrow{a_i} b_2\cdots b_{n-1}a_i$$

(Remove the first letter and append a_i at the end.)

Claim. The de Bruijn graph G of order n on A has an Eulerian circuit C.

Claim. The de Bruijn graph G of order n on A has an Eulerian circuit C. This follows because G is strongly connected. (Why?)

Claim. The de Bruijn graph G of order n on A has an Eulerian circuit C. This follows because G is strongly connected. (Why?)

AND in-degree(v) = out-degree(v) for all $v \in V$. (Why?)

Claim. The de Bruijn graph G of order n on A has an Eulerian circuit C. This follows because G is strongly connected. (Why?)

AND in-degree(v) = out-degree(v) for all $v \in V$. (Why?)

Construct a sequence S: Follow C and record the edge labels. Claim. S is a de Bruijn sequence of order n on A.

Claim. The de Bruijn graph G of order n on A has an Eulerian circuit C. This follows because G is strongly connected. (Why?)

AND in-degree(v) = out-degree(v) for all $v \in V$. (Why?)

Construct a sequence S: Follow C and record the edge labels.
Claim. S is a de Bruijn sequence of order n on A.
▶ S is of length kⁿ.

Claim. The de Bruijn graph G of order n on A has an Eulerian circuit C. This follows because G is strongly connected. (Why?)

AND in-degree(v) = out-degree(v) for all $v \in V$. (Why?)

Construct a sequence S: Follow C and record the edge labels.

Claim. S is a de Bruijn sequence of order n on A.

- ▶ S is of length k^n .
- Every *n*-length word occurs as a consecutive subsequence of S.

Claim. The de Bruijn graph G of order n on A has an Eulerian circuit C. This follows because G is strongly connected. (Why?)

AND in-degree(v) = out-degree(v) for all $v \in V$. (Why?)

Construct a sequence S: Follow C and record the edge labels.

Claim. S is a de Bruijn sequence of order n on A.

- ▶ S is of length k^n .
- ▶ Every *n*-length word occurs as a consecutive subsequence of *S*.

By construction, the sequence of the n-1 labels of edges visited before arriving at a vertex is **exactly** the label of the vertex.

Claim. The de Bruijn graph G of order n on A has an Eulerian circuit C. This follows because G is strongly connected. (Why?)

AND in-degree(v) = out-degree(v) for all $v \in V$. (Why?)

Construct a sequence S: Follow C and record the edge labels.

Claim. S is a de Bruijn sequence of order n on A.

- ▶ S is of length k^n .
- ▶ Every *n*-length word occurs as a consecutive subsequence of *S*.

By construction, the sequence of the n-1 labels of edges visited before arriving at a vertex is **exactly** the label of the vertex.

Recording the label of an edge e in C completes a word of length n: (label of origin vertex) + (label of edge)

Claim. The de Bruijn graph G of order n on A has an Eulerian circuit C. This follows because G is strongly connected. (Why?)

AND in-degree(v) = out-degree(v) for all $v \in V$. (Why?)

Construct a sequence S: Follow C and record the edge labels.

Claim. S is a de Bruijn sequence of order n on A.

- ▶ *S* is of length k^n .
- ▶ Every *n*-length word occurs as a consecutive subsequence of *S*.

By construction, the sequence of the n-1 labels of edges visited before arriving at a vertex is **exactly** the label of the vertex.

Recording the label of an edge e in C completes a word of length n: (label of origin vertex) + (label of edge) This is a different word for every edge! So every word appears in S.

Example: The binary de Bruijn graph of order 4

- 1. Find an Eulerian circuit in this graph.
- 2. Write down the corresponding sequence.
- 3. Verify that it is a de Bruijn sequence. (use chart, p.63)
- 4. Convince yourself that the name of a vertex is the same as the sequence formed by the three previous edges.