Directed Graphs

Definition. A directed graph (or digraph) is a graph $G=(V, E)$, where every edge $e=v w$ is directed from one vertex to another:

$$
e: v \rightarrow w \quad \text { or } \quad e: w \rightarrow v
$$

Directed Graphs

Definition. A directed graph (or digraph) is a graph $G=(V, E)$, where every edge $e=v w$ is directed from one vertex to another:

$$
e: v \rightarrow w \quad \text { or } \quad e: w \rightarrow v
$$

Remark. An edge $e: v \rightarrow w$ is different from $e^{\prime}: w \rightarrow v$ and a digraph including both is not considered to have multiple edges.

Directed Graphs

Definition. A directed graph (or digraph) is a graph $G=(V, E)$, where every edge $e=v w$ is directed from one vertex to another:

$$
e: v \rightarrow w \quad \text { or } \quad e: w \rightarrow v
$$

Remark. An edge $e: v \rightarrow w$ is different from $e^{\prime}: w \rightarrow v$ and a digraph including both is not considered to have multiple edges.

Definition. The in-degree of a vertex v is the number of edges directed toward v.
Definition. The out-degree of a vertex v is the number of edges directed away from v.

Directed Graphs

Definition. A directed graph (or digraph) is a graph $G=(V, E)$, where every edge $e=v w$ is directed from one vertex to another:

$$
e: v \rightarrow w \quad \text { or } \quad e: w \rightarrow v
$$

Remark. An edge $e: v \rightarrow w$ is different from $e^{\prime}: w \rightarrow v$ and a digraph including both is not considered to have multiple edges.

Definition. The in-degree of a vertex v is the number of edges directed toward v.
Definition. The out-degree of a vertex v is the number of edges directed away from v. Important. Any path / cycle / walk in a digraph must respect the direction on every edge.

Directed Graphs

Definition. A directed graph (or digraph) is a graph $G=(V, E)$, where every edge $e=v w$ is directed from one vertex to another:

$$
e: v \rightarrow w \quad \text { or } \quad e: w \rightarrow v
$$

Remark. An edge $e: v \rightarrow w$ is different from $e^{\prime}: w \rightarrow v$ and a digraph including both is not considered to have multiple edges.

Definition. The in-degree of a vertex v is the number of edges directed toward v.
Definition. The out-degree of a vertex v is the number of edges directed away from v. Important. Any path / cycle / walk in a digraph must respect the direction on every edge.
Definition. A digraph is strongly connected if there is a directed path from every vertex to every other vertex.

Generalizations to directed graphs

Definition. A directed pseudograph allows loops and multiple edges.

Generalizations to directed graphs

Definition. A directed pseudograph allows loops and multiple edges.
We can generalize Theorems 3.1.1 and 3.1.2 to directed pseudographs:
Let G be a directed pseudograph that is strongly connected*.
G has an Eulerian circuit
\Uparrow
the in-degree of every vertex equals the out-degree of every vertex.

Application: de Bruijn sequences

Definition. An alphabet is a set $\mathcal{A}=\left\{a_{1}, \ldots, a_{k}\right\}$.
Definition. A sequence or word from \mathcal{A} is a succession $S=s_{1} s_{2} s_{3} \cdots s_{l}$, where each $s_{i} \in \mathcal{A} ; l$ is the length of S.

Application: de Bruijn sequences

Definition. An alphabet is a set $\mathcal{A}=\left\{a_{1}, \ldots, a_{k}\right\}$.
Definition. A sequence or word from \mathcal{A} is a succession
$S=s_{1} s_{2} s_{3} \cdots s_{l}$, where each $s_{i} \in \mathcal{A} ; l$ is the length of S.
Definition. A sequence is called a binary sequence when $\mathcal{A}=\{0,1\}$.

Application: de Bruijn sequences

Definition. An alphabet is a set $\mathcal{A}=\left\{a_{1}, \ldots, a_{k}\right\}$.
Definition. A sequence or word from \mathcal{A} is a succession $S=s_{1} s_{2} s_{3} \cdots s_{l}$, where each $s_{i} \in \mathcal{A} ; l$ is the length of S.

Definition. A sequence is called a binary sequence when $\mathcal{A}=\{0,1\}$.
Definition. A de Bruijn sequence of order n on \mathcal{A} is word of length k^{n} in which every n-length word occurs as a consecutive subsequence.

Example. $S=0000110101111001$ is a binary de Bruijn seq. of order 4.

Application: de Bruijn sequences

Definition. An alphabet is a set $\mathcal{A}=\left\{a_{1}, \ldots, a_{k}\right\}$.
Definition. A sequence or word from \mathcal{A} is a succession $S=s_{1} s_{2} s_{3} \cdots s_{l}$, where each $s_{i} \in \mathcal{A} ; l$ is the length of S.

Definition. A sequence is called a binary sequence when $\mathcal{A}=\{0,1\}$.
Definition. A de Bruijn sequence of order n on \mathcal{A} is word of length k^{n} in which every n-length word occurs as a consecutive subsequence.

Example. $S=0000110101111001$ is a binary de Bruijn seq. of order 4.
EVERY binary sequence of length 4 is present. (We allow cycling.)

0000	0010	0100	0110	1000	1010	1100	1110
0001	0011	0101	0111	1001	1011	1101	1111

Application: de Bruijn sequences

Definition. An alphabet is a set $\mathcal{A}=\left\{a_{1}, \ldots, a_{k}\right\}$.
Definition. A sequence or word from \mathcal{A} is a succession $S=s_{1} s_{2} s_{3} \cdots s_{l}$, where each $s_{i} \in \mathcal{A} ; l$ is the length of S.

Definition. A sequence is called a binary sequence when $\mathcal{A}=\{0,1\}$.
Definition. A de Bruijn sequence of order n on \mathcal{A} is word of length k^{n} in which every n-length word occurs as a consecutive subsequence.

Example. $S=0000110101111001$ is a binary de Bruijn seq. of order 4.
EVERY binary sequence of length 4 is present. (We allow cycling.)

0000	0010	0100	0110	1000	1010	1100	1110
0001	0011	0101	0111	1001	1011	1101	1111

This is the most compact way to represent these sixteen sequences.

Application: de Bruijn sequences

Definition. An alphabet is a set $\mathcal{A}=\left\{a_{1}, \ldots, a_{k}\right\}$.
Definition. A sequence or word from \mathcal{A} is a succession $S=s_{1} s_{2} s_{3} \cdots s_{l}$, where each $s_{i} \in \mathcal{A} ; l$ is the length of S.

Definition. A sequence is called a binary sequence when $\mathcal{A}=\{0,1\}$.
Definition. A de Bruijn sequence of order n on \mathcal{A} is word of length k^{n} in which every n-length word occurs as a consecutive subsequence.

Example. $S=0000110101111001$ is a binary de Bruijn seq. of order 4.
EVERY binary sequence of length 4 is present. (We allow cycling.)

0000	0010	0100	0110	1000	1010	1100	1110
0001	0011	0101	0111	1001	1011	1101	1111

This is the most compact way to represent these sixteen sequences.
Theorem. A de Bruijn sequence of order n on \mathcal{A} always exists.

de Bruijn graphs

Definition. The de Bruijn graph of order n on the alphabet $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ is a directed pseudograph.

de Bruijn graphs

Definition. The de Bruijn graph of order n on the alphabet $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ is a directed pseudograph. Its vertices are labeled by words of \mathcal{A} of length $n-1$.

de Bruijn graphs

Definition. The de Bruijn graph of order n on the alphabet $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ is a directed pseudograph. Its vertices are labeled by words of \mathcal{A} of length $n-1$.
Each vertex has k out-edges labeled by the letters of \mathcal{A} :

$$
b_{1} b_{2} \cdots b_{n-1} \xrightarrow{a_{i}} b_{2} \cdots b_{n-1} a_{i}
$$

(Remove the first letter and append a_{i} at the end.)

de Bruijn graphs

Definition. The de Bruijn graph of order n on the alphabet $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ is a directed pseudograph. Its vertices are labeled by words of \mathcal{A} of length $n-1$.
Each vertex has k out-edges labeled by the letters of \mathcal{A} :

$$
b_{1} b_{2} \cdots b_{n-1} \xrightarrow{a_{i}} b_{2} \cdots b_{n-1} a_{i}
$$

(Remove the first letter and append a_{i} at the end.)
Examples.
The binary de Bruijn
graph of order 3

de Bruijn graphs

Definition. The de Bruijn graph of order n on the alphabet $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ is a directed pseudograph. Its vertices are labeled by words of \mathcal{A} of length $n-1$.
Each vertex has k out-edges labeled by the letters of \mathcal{A} :

$$
b_{1} b_{2} \cdots b_{n-1} \xrightarrow{a_{i}} b_{2} \cdots b_{n-1} a_{i}
$$

(Remove the first letter and append a_{i} at the end.)

Examples.
The binary de Bruijn graph of order 3

The de Bruijn graph of order 2 on the alphabet $\mathcal{A}=\{a, b, c\}$.

Proof that a de Bruijn sequence always exists

Claim. The de Bruijn graph G of order n on \mathcal{A} has an Eulerian circuit C.

Proof that a de Bruijn sequence always exists

Claim. The de Bruijn graph G of order n on \mathcal{A} has an Eulerian circuit C. This follows because G is strongly connected. (Why?)

Proof that a de Bruijn sequence always exists

Claim. The de Bruijn graph G of order n on \mathcal{A} has an Eulerian circuit C. This follows because G is strongly connected. (Why?)

AND in-degree $(v)=$ out-degree (v) for all $v \in V$. (Why?)

Proof that a de Bruijn sequence always exists

Claim. The de Bruijn graph G of order n on \mathcal{A} has an Eulerian circuit C. This follows because G is strongly connected. (Why?)

AND in-degree $(v)=$ out-degree (v) for all $v \in V$. (Why?)

Construct a sequence S : Follow C and record the edge labels.
Claim. S is a de Bruijn sequence of order n on \mathcal{A}.

Proof that a de Bruijn sequence always exists

Claim. The de Bruijn graph G of order n on \mathcal{A} has an Eulerian circuit C. This follows because G is strongly connected. (Why?)

AND in-degree $(v)=$ out-degree (v) for all $v \in V$. (Why?)

Construct a sequence S : Follow C and record the edge labels.
Claim. S is a de Bruijn sequence of order n on \mathcal{A}.

- S is of length k^{n}.

Proof that a de Bruijn sequence always exists

Claim. The de Bruijn graph G of order n on \mathcal{A} has an Eulerian circuit C. This follows because G is strongly connected. (Why?)

AND in-degree $(v)=$ out-degree (v) for all $v \in V$. (Why?)

Construct a sequence S : Follow C and record the edge labels.
Claim. S is a de Bruijn sequence of order n on \mathcal{A}.

- S is of length k^{n}.
- Every n-length word occurs as a consecutive subsequence of S.

Proof that a de Bruijn sequence always exists

Claim. The de Bruijn graph G of order n on \mathcal{A} has an Eulerian circuit C. This follows because G is strongly connected. (Why?)

AND in-degree $(v)=$ out-degree (v) for all $v \in V$. (Why?)

Construct a sequence S : Follow C and record the edge labels.
Claim. S is a de Bruijn sequence of order n on \mathcal{A}.

- S is of length k^{n}.
- Every n-length word occurs as a consecutive subsequence of S.

By construction, the sequence of the $n-1$ labels of edges visited before arriving at a vertex is exactly the label of the vertex.

Proof that a de Bruijn sequence always exists

Claim. The de Bruijn graph G of order n on \mathcal{A} has an Eulerian circuit C. This follows because G is strongly connected. (Why?)

AND in-degree $(v)=$ out-degree (v) for all $v \in V$. (Why?)

Construct a sequence S : Follow C and record the edge labels.
Claim. S is a de Bruijn sequence of order n on \mathcal{A}.
$-S$ is of length k^{n}.

- Every n-length word occurs as a consecutive subsequence of S.

By construction, the sequence of the $n-1$ labels of edges visited before arriving at a vertex is exactly the label of the vertex.

Recording the label of an edge e in C completes a word of length n : (label of origin vertex) + (label of edge)

Proof that a de Bruijn sequence always exists

Claim. The de Bruijn graph G of order n on \mathcal{A} has an Eulerian circuit C. This follows because G is strongly connected. (Why?)

AND in-degree $(v)=$ out-degree (v) for all $v \in V$. (Why?)

Construct a sequence S : Follow C and record the edge labels.
Claim. S is a de Bruijn sequence of order n on \mathcal{A}.
$-S$ is of length k^{n}.

- Every n-length word occurs as a consecutive subsequence of S.

By construction, the sequence of the $n-1$ labels of edges visited before arriving at a vertex is exactly the label of the vertex.
Recording the label of an edge e in C completes a word of length n :
(label of origin vertex) + (label of edge)
This is a different word for every edge! So every word appears in S.

Example: The binary de Bruijn graph of order 4

1. Find an Eulerian circuit in this graph.
2. Write down the corresponding sequence.
3. Verify that it is a de Bruijn sequence. (use chart, p.63)
4. Convince yourself that the name of a vertex is the same as the sequence formed by the three previous edges.
