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Directed Graphs

Definition. A directed graph (or digraph) is a graph G = (V ,E ),
where every edge e = vw is directed from one vertex to another:

e : v → w or e : w → v .

Remark. An edge e : v → w is different from e ′ : w → v and a
digraph including both is not considered to have multiple edges.

Definition. The in-degree of a vertex v is
the number of edges directed toward v .

Definition. The out-degree of a vertex v is
the number of edges directed away from v .

Important. Any path / cycle / walk in a
digraph must respect the direction on every edge.

Definition. A digraph is strongly connected if there is
a directed path from every vertex to every other vertex.
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Generalizations to directed graphs

Definition. A directed pseudograph allows loops and multiple edges.

We can generalize Theorems 3.1.1 and 3.1.2 to directed pseudographs:

Let G be a directed pseudograph that is strongly connected∗.

G has an Eulerian circuit

⇕
the in-degree of every vertex equals

the out-degree of every vertex.
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Application: de Bruijn sequences

Definition. An alphabet is a set A = {a1, . . . , ak}.
Definition. A sequence or word from A is a succession

S = s1s2s3 · · · sl , where each si ∈ A; l is the length of S .

Definition. A sequence is called a binary sequence when A = {0, 1}.

Definition. A de Bruijn sequence of order n on A is word of length
kn in which every n-length word occurs as a consecutive subsequence.

Example. S = 0000110101111001 is a binary de Bruijn seq. of order 4.

EVERY binary sequence of length 4 is present. (We allow cycling.)

0000 0010 0100 0110 1000 1010 1100 1110
0001 0011 0101 0111 1001 1011 1101 1111

This is the most compact way to represent these sixteen sequences.

Theorem. A de Bruijn sequence of order n on A always exists.
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de Bruijn graphs

Definition. The de Bruijn graph of order n
on the alphabet A = {a1, a2, . . . , ak} is a directed pseudograph.

Its vertices are labeled by words of A of length n − 1.

Each vertex has k out-edges labeled by the letters of A:

b1b2 · · · bn−1
ai−→ b2 · · · bn−1ai

(Remove the first letter and append ai at the end.)

Examples.
The binary de Bruijn
graph of order 3

The de Bruijn graph of order 2
on the alphabet A = {a, b, c}.
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Proof that a de Bruijn sequence always exists

Claim. The de Bruijn graph G of order n on A has an Eulerian
circuit C .

This follows because G is strongly connected. (Why?)

AND in-degree(v) = out-degree(v) for all v ∈ V . (Why?)

Construct a sequence S : Follow C and record the edge labels.

Claim. S is a de Bruijn sequence of order n on A.

▶ S is of length kn.

▶ Every n-length word occurs as a consecutive subsequence of S .

By construction, the sequence of the n − 1 labels of edges visited
before arriving at a vertex is exactly the label of the vertex.

Recording the label of an edge e in C completes a word of length n:

(label of origin vertex) + (label of edge)

This is a different word for every edge! So every word appears in S .
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Example: The binary de Bruijn graph of order 4
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1. Find an Eulerian circuit in this graph.

2. Write down the corresponding sequence.

3. Verify that it is a de Bruijn sequence. (use chart, p.63)

4. Convince yourself that the name of a vertex is the same as the
sequence formed by the three previous edges.
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