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Matchings in Graphs

Definition. A matching M in a graph G is a subset of edges of G
that share no vertices.

Definition. A maximal matching M is a matching such that the
inclusion into M of any edge of G \M is no longer a matching.

Definition. A maximum matching is a matching M that has the
most edges possible for the graph G .

Definition. A perfect matching is a matching involving every vertex.

Thought Exercise: What is the result of overlapping two matchings?
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Minimum vs. Minimal

We have just had two definitions related to the concept of “largest”.
An important concept is the distinction between

maximum and maximal.

Maximum refers to an element of absolute largest size.
(of ALL elts with property, this is largest.)

Maximal refers to an element of relative largest size.
(for THIS elt with property, no subset has property.)

Example. maximal vs. maximal path in a graph:

Example. maximum vs. maximal clique in a graph:
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Application: Scheduling

Suppose you are working in a group trying to complete all the
problems on the homework. Depending on everyone’s preferences,
you would like to assign each member one problem to do.
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Person A likes problems 1, 2, 3, and 5.
Person B likes problems 1, 2, and 4.
Person C likes problems 3, 4, and 5.
Person D likes problems 2 and 3.
Person E likes problems 3 and 4.

Create a graph that models the situation.

Question.

What is a maximum matching for this graph?

We will use an algorithm to answer this question.
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Algorithms

Definition. An algorithm is a set of rules followed to solve a problem.

In general, an algorithm has the steps: Havel–Hakimi:

1. Organize the input.

2. Repeatedly apply some steps
until a termination condition holds

3. Analyze data upon termination

Computers can be used to run the algorithms once we verify they work.

To verify the correctness of an algorithm:

1. Verify that the algorithm terminates. (often invoking finiteness)

2. Verify that the result satisfies the desired conditions.
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Motivating The Hungarian Algorithm

Let us work through the basic idea behind the algorithm.
We start with an initial matching; we might as well make it maximal.
Why is the pictured matching maximal?
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Definition. Given a matching M in a graph G ,
an M-alternating path is a path in G that
starts at a vertex not in M, and whose edges
alternate between being in M and not in M.

Example. D ! 2 ! B ! 4 ! C

is an M-alternating path.

Definition. An M-augmenting path is an
M-alternating path that begins AND ends at
unmatched vertices.

It is augmenting because we can improve M by toggling the edges
between those in M and those not in M.
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Motivating The Hungarian Algorithm
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Given M, P = D ! 2 ! B ! 1 is an M-augmenting path.
Toggling the edges in P gives a new matching M

0.

Given M
0, P 0 = E ! 4 ! C ! 3 ! A ! 5 is an M

0-augmenting
path. Toggling the edges in P

0 gives a new matching M
00.

The matching M
00 is maximal. (Why?)
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The Hungarian Algorithm

The Hungarian Algorithm (Kuhn, Kőnig, Egeváry) [Finds a
maximum matching in a bipartite graph (w/red and blue vertices)]

1. Start with a bipartite graph G and any matching M.
Label all red vertices eligible (for augmentation).

2. If all red, eligible vertices are matched, stop. Otherwise, there
exists a red, unmatched, eligible vertex to use in the next step.

3. Let v be an unmatched, eligible, red vertex. Start growing all
possible M-alternating paths from v . That is, follow every edge
not in M to a blue vertex. From a matched blue vertex, follow the
edge of M back to a red vertex, and repeat as far as possible.
(
If there is an M-augmenting path, toggle edges to augment M.

If there is no M-augmenting path, mark a ineligible.

Return to Step 2.
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Applying the Hungarian Algorithm

Here is something that might happen during an application of the
Hungarian algorithm:
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Example. There is no M-augmenting path
starting at B in the graph to the right.

We would mark B ineligible and move on to
the next eligible, unmatched red vertex in the
graph (E ).
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Proof of Correctness

Claim. The Hungarian Algorithm gives a maximum matching.

Proof. We must show that the algorithm always stops, and that
when it stops, the output is indeed a maximum matching.

The algorithm terminates. Each time Step 3 is run, one red
vertex either becomes matched or becomes ineligible. Also, no red
vertex that starts matched becomes unmatched. Since there are a
finite number of red vertices, the algorithm must terminate.

The output is a maximum matching. The output M is a
matching inducing no M-augmenting paths in the graph. Suppose
that there were another matching M

⇤ that used more edges than M.

When we overlap M and M
⇤, the result is a union of cycles and paths.

At least one path must have more edges from M
⇤ than M.

This path is an M-augmenting path, contradicting the definition of M.


