Planarity

Up until now, graphs have been completely abstract.
In Topological Graph Theory, it matters how the graphs are drawn.

- Do the edges cross?
- Are there knots in the graph structure?

Definition. A drawing of a graph G is a pictorial representation of G in the plane as points and curves, satisfying the following:

- The curves must be simple, which means no self-intersections.
- No two edges can intersect twice. (Mult. edges: Except at endpts)
- No three edges can intersect at the same point.

Definition. A plane drawing of a graph G is a drawing of the graph in the plane with no crossings.
Definition. A graph G is planar if there exists a plane drawing of G. Otherwise, we say G is nonplanar.
Example. K_{4} is planar because there exists a plane drawing of K_{4}.

Vertices, Edges, and Faces

Definition. In a plane drawing, edges divide the plane into regions, or faces.

There will always be one face with infinite area. This is called the outside face.

Notation. Let $p=\#$ of vertices, $q=\#$ of edges, $r=\#$ of regions. Compute the following data:

Graph	p	q	r	
Tetrahedron				
Cube				
Octahedron				
Dodecahedron				
Icosahedron				

In 1750, Euler noticed that \qquad in each of these examples.

Euler's Formula

Theorem 8.1.1 (Euler's Formula) If G is a connected planar graph, then in a plane drawing of $G, p-q+r=2$.
Proof. (by induction on the number of cycles)
Base Case: If G is a connected graph with no cycles, then G Therefore $r=$ \qquad , and we have $p-q+r=p-(p-1)+1=2$.

Inductive Hypothesis: Suppose that for all plane drawings with fewer than k cycles, we have $p-q+r=2$.
Want to show: In a plane drawing of a graph G with k cycles, $p-q+r=2$ also holds.

Let C be a cycle in G, and e be an edge of C. Edge e is adjacent to:
Now remove e: Define $H=G \backslash e$. Now H has fewer cycles than G, and one fewer region. The inductive hypothesis holds for H, giving:

Maximal Planar Graphs

A graph with "too many" edges cannot be planar.
Goal: Find a numerical characterization of "too many"
Definition. A planar graph is called maximal planar if adding an edge between any two non-adjacent vertices results in a non-planar graph.

Examples: Octahedron $K_{5} \backslash e$

What do we notice about these graphs?

Numerical Conditions on Planar Graphs

Claim. Every face of a maximal planar graph is a \qquad !

Proof. Otherwise,

Theorem 8.1.2. If G is maximal planar and $p \geq 3$, then $q=3 p-6$.
Proof. Consider any plane drawing of G.
Let $p=\#$ of vertices, $q=\#$ of edges, and $r=\#$ of regions.
We count the number of face-edge incidences in two ways:
From a face-centric POV, the number of face-edge incidences is
From an edge-centric POV, the number of face-edge incidences is
Substituting into Euler's formula: $p-q+(2 q / 3)=2$, so

Question. Do we need $p \geq 3$?

Numerical Conditions on Planar Graphs

Corollary 8.1.3. Every planar graph with $p \geq 3$ vertices has at most $3 p-6$ edges.

- Start with any planar graph G with p vertices and q edges.
- Add edges to G until it is maximal planar. (with $Q \geq q$ edges.)
- This resulting graph satisfies $Q=3 p-6$; hence $q \leq 3 p-6$.

Theorem 8.1.4. The graph K_{5} is not planar.
Proof.
Theorem 8.1.7. Every planar graph has a vertex with degree ≤ 5.
Proof.

Numerical Conditions on Planar Graphs

Recall: The girth $g(G)$ of a graph G is the smallest cycle size.
Theorem 8.1.5.* If G is planar with girth ≥ 4, then $q \leq 2 p-4$.
Proof. Modify the above proof-instead of $3 r=2 q$, we know $4 r \leq 2 q$. This implies that

$$
2=p-q+r \leq p-q+\frac{2 q}{4}=p-\frac{q}{2}
$$

Therefore, $q \leq 2 p-4$.
Theorem 8.1.5. If G is planar and bipartite, then $q \leq 2 p-4$.
Theorem 8.1.6. $K_{3,3}$ is not planar.

