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Planarity

Up until now, graphs have been completely abstract.

In Topological Graph Theory, it matters how the graphs are drawn.

▶ Do the edges cross?

▶ Are there knots in the graph structure?

Definition. A drawing of a graph G is a pictorial representation of G
in the plane as points and curves, satisfying the following:

▶ The curves must be simple, which means no self-intersections.

▶ No two edges can intersect twice. (Mult. edges: Except at endpts)

▶ No three edges can intersect at the same point.

Definition. A plane drawing of a graph G is a drawing of the
graph in the plane with no crossings.

Definition. A graph G is planar if there exists a plane drawing of G .
Otherwise, we say G is nonplanar.

Example. K4 is planar because there exists a plane drawing of K4.
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Vertices, Edges, and Faces

Definition. In a plane drawing, edges divide
the plane into regions, or faces.

There will always be one face with infinite area.
This is called the outside face.

Notation. Let p=# of vertices, q=# of edges, r=# of regions.
Compute the following data:

Graph p q r

Tetrahedron
Cube

Octahedron
Dodecahedron
Icosahedron

In 1750, Euler noticed that in each of these examples.
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Euler’s Formula

Theorem 8.1.1 (Euler’s Formula) If G is a connected planar graph,
then in a plane drawing of G , p − q + r = 2.

Proof. (by induction on the number of cycles)

Base Case: If G is a connected graph with no cycles, then G

Therefore r = , and we have p − q + r = p − (p − 1) + 1 = 2.

Inductive Hypothesis: Suppose that for all plane drawings with
fewer than k cycles, we have p − q + r = 2.
Want to show: In a plane drawing of a graph G with k cycles,
p − q + r = 2 also holds.

Let C be a cycle in G , and e be an edge of C . Edge e is adjacent to:

Now remove e: Define H = G \ e. Now H has fewer cycles than G ,
and one fewer region. The inductive hypothesis holds for H, giving:
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Maximal Planar Graphs

A graph with “too many” edges cannot be planar.

Goal: Find a numerical characterization of “too many”

Definition. A planar graph is called maximal planar if adding an edge
between any two non-adjacent vertices results in a non-planar graph.

Examples: Octahedron K5 \ e

What do we notice about these graphs?
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Numerical Conditions on Planar Graphs

Claim. Every face of a maximal planar graph is a !

Proof. Otherwise,

Theorem 8.1.2. If G is maximal planar and p ≥ 3, then q = 3p− 6.

Proof. Consider any plane drawing of G .
Let p = # of vertices, q = # of edges, and r = # of regions.

We count the number of face-edge incidences in two ways:

From a face-centric POV, the number of face-edge incidences is

From an edge-centric POV, the number of face-edge incidences is

Substituting into Euler’s formula: p − q +
(
2q/3

)
= 2, so

Question. Do we need p ≥ 3?
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Numerical Conditions on Planar Graphs

Corollary 8.1.3. Every planar graph with p ≥ 3 vertices has at
most 3p − 6 edges.

▶ Start with any planar graph G with p vertices and q edges.

▶ Add edges to G until it is maximal planar. (with Q ≥ q edges.)

▶ This resulting graph satisfies Q = 3p − 6; hence q ≤ 3p − 6.

Theorem 8.1.4. The graph K5 is not planar.

Proof.

Theorem 8.1.7. Every planar graph has a vertex with degree ≤ 5.

Proof.
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Numerical Conditions on Planar Graphs

Recall: The girth g(G ) of a graph G is the smallest cycle size.

Theorem 8.1.5.⋆ If G is planar with girth ≥ 4, then q ≤ 2p − 4.

Proof. Modify the above proof—instead of 3r = 2q, we know
4r ≤ 2q. This implies that

2 = p − q + r ≤ p − q +
2q

4
= p − q

2
.

Therefore, q ≤ 2p − 4.

Theorem 8.1.5. If G is planar and bipartite, then q ≤ 2p − 4.

Theorem 8.1.6. K3,3 is not planar.



Planarity — §8.1 73

Numerical Conditions on Planar Graphs

Recall: The girth g(G ) of a graph G is the smallest cycle size.

Theorem 8.1.5.⋆ If G is planar with girth ≥ 4, then q ≤ 2p − 4.

Proof. Modify the above proof—instead of 3r = 2q, we know
4r ≤ 2q. This implies that

2 = p − q + r ≤ p − q +
2q

4
= p − q

2
.

Therefore, q ≤ 2p − 4.

Theorem 8.1.5. If G is planar and bipartite, then q ≤ 2p − 4.

Theorem 8.1.6. K3,3 is not planar.



Planarity — §8.1 73

Numerical Conditions on Planar Graphs

Recall: The girth g(G ) of a graph G is the smallest cycle size.

Theorem 8.1.5.⋆ If G is planar with girth ≥ 4, then q ≤ 2p − 4.

Proof. Modify the above proof—instead of 3r = 2q, we know
4r ≤ 2q. This implies that

2 = p − q + r ≤ p − q +
2q

4
= p − q

2
.

Therefore, q ≤ 2p − 4.

Theorem 8.1.5. If G is planar and bipartite, then q ≤ 2p − 4.

Theorem 8.1.6. K3,3 is not planar.



Planarity — §8.1 73

Numerical Conditions on Planar Graphs

Recall: The girth g(G ) of a graph G is the smallest cycle size.

Theorem 8.1.5.⋆ If G is planar with girth ≥ 4, then q ≤ 2p − 4.

Proof. Modify the above proof—instead of 3r = 2q, we know
4r ≤ 2q. This implies that

2 = p − q + r ≤ p − q +
2q

4
= p − q

2
.

Therefore, q ≤ 2p − 4.

Theorem 8.1.5. If G is planar and bipartite, then q ≤ 2p − 4.

Theorem 8.1.6. K3,3 is not planar.


	Planarity — §8.1 
	Planarity — §8.1 
	Dual Graphs
	The Four Color Theorem — §8.2

