## Dual Graphs

Definition. Given a plane drawing of a planar graph $G$, the dual graph $D(G)$ of $G$ is a graph with vertices corresponding to the regions of $G$. Two vertices in $D(G)$ are connected by an edge each time the two regions share an edge as a border.


## Dual Graphs

Definition. Given a plane drawing of a planar graph $G$, the dual graph $D(G)$ of $G$ is a graph with vertices corresponding to the regions of $G$. Two vertices in $D(G)$ are connected by an edge each time the two regions share an edge as a border.


- The dual graph of a simple graph may not be simple.
- Two regions may be adjacent multiple times.


## Dual Graphs

Definition. Given a plane drawing of a planar graph $G$, the dual graph $D(G)$ of $G$ is a graph with vertices corresponding to the regions of $G$. Two vertices in $D(G)$ are connected by an edge each time the two regions share an edge as a border.


- The dual graph of a simple graph may not be simple.
- Two regions may be adjacent multiple times.
- $G$ and $D(G)$ have the same number of edges.


## Dual Graphs

Definition. Given a plane drawing of a planar graph $G$, the dual graph $D(G)$ of $G$ is a graph with vertices corresponding to the regions of $G$. Two vertices in $D(G)$ are connected by an edge each time the two regions share an edge as a border.


- The dual graph of a simple graph may not be simple.
- Two regions may be adjacent multiple times.
- $G$ and $D(G)$ have the same number of edges.

Definition. A graph $G$ is self-dual if $G$ is isomorphic to $D(G)$.

## Maps

Definition. A map is a plane drawing of a connected, bridgeless, planar multigraph. If the map is 3 -regular, then it is a normal map.


Definition. In a map, the regions are called countries. Countries may share several edges.

## Maps

Definition. A map is a plane drawing of a connected, bridgeless, planar multigraph. If the map is 3 -regular, then it is a normal map.


Definition. In a map, the regions are called countries. Countries may share several edges.

Definition. A proper coloring of a map is an assignment of colors to each country so that no two adjacent countries are the same color.

Question. How many colors are necessary to properly color a map?

## Proper Map Colorings

Lemma 8.2.2. If $M$ is a map that is a union of simple closed curves, the regions can be colored by two colors.


## Proper Map Colorings

Lemma 8.2.2. If $M$ is a map that is a union of simple closed curves, the regions can be colored by two colors.


Proof. Color the regions $R$ of $M$ as follows:
$\left\{\begin{array}{ll}\text { red } & \text { if } R \text { is enclosed in an odd number of curves } \\ \text { blue } & \text { if } R \text { is enclosed in an even number of curves }\end{array}\right\}$.

## Proper Map Colorings

Lemma 8.2.2. If $M$ is a map that is a union of simple closed curves, the regions can be colored by two colors.


Proof. Color the regions $R$ of $M$ as follows:
$\left\{\begin{array}{ll}\text { red } & \text { if } R \text { is enclosed in an odd number of curves } \\ \text { blue } & \text { if } R \text { is enclosed in an even number of curves }\end{array}\right\}$.
This is a proper coloring of $M$. Any two adjacent regions are on opposite sides of a closed curve, so the number of curves in which each is enclosed is off by one.

## The Four Color Theorem

Lemma 8.2.6. (The Four Color Theorem)
Every normal map has a proper coloring by four colors.
Proof. Very hard.

* This is the wrong object $\star$


## The Four Color Theorem

Lemma 8.2.6. (The Four Color Theorem)
Every normal map has a proper coloring by four colors.
Proof. Very hard.

* This is the wrong object $\star$

Theorem. If $G$ is a plane drawing of a maximal planar graph, then its dual graph $D(G)$ is a normal map.

Maximal Planar:

- Every face of $G$ is a triangle $\rightsquigarrow$
- $G$ is connected $\rightsquigarrow$
- $G$ is planar $\rightsquigarrow$


## The Four Color Theorem

Assuming Lemma 8.2.6,
$G$ is maximal planar $\Rightarrow D(G)$ is a normal map

$$
\begin{array}{ll}
\Rightarrow & \text { countries of } D(G) \text { 4-colorable } \\
\Rightarrow & \text { vertices of } G \text { 4-colorable } \\
\Rightarrow & \chi(G) \leq 4
\end{array}
$$

## This would prove:

Theorem 8.2.8. If $G$ is maximal planar, then $\chi(G) \leq 4$.

## The Four Color Theorem

Assuming Lemma 8.2.6,
$G$ is maximal planar $\Rightarrow D(G)$ is a normal map

$$
\begin{array}{ll}
\Rightarrow & \text { countries of } D(G) \text { 4-colorable } \\
\Rightarrow & \text { vertices of } G \text { 4-colorable } \\
\Rightarrow & \chi(G) \leq 4
\end{array}
$$

## This would prove:

Theorem 8.2.8. If $G$ is maximal planar, then $\chi(G) \leq 4$.
Remember: Every planar graph is a subgraph of a maximal planar graph. So Lemma C implies:

Theorem 8.2.9. If $G$ is a planar graph, then $\chi(G) \leq 4$.

## The Four Color Theorem

Assuming Lemma 8.2.6,
$G$ is maximal planar $\Rightarrow D(G)$ is a normal map

$$
\begin{array}{ll}
\Rightarrow & \text { countries of } D(G) \text { 4-colorable } \\
\Rightarrow & \text { vertices of } G \text { 4-colorable } \\
\Rightarrow & \chi(G) \leq 4
\end{array}
$$

## This would prove:

Theorem 8.2.8. If $G$ is maximal planar, then $\chi(G) \leq 4$.
Remember: Every planar graph is a subgraph of a maximal planar graph. So Lemma C implies:

Theorem 8.2.9. If $G$ is a planar graph, then $\chi(G) \leq 4$.

* History *

