The Six Color Theorem

Theorem. Let G be a planar graph
There exists a proper 6 -coloring of G.
Proof. Let G be a the smallest planar graph (by number of vertices) that has no proper 6-coloring.

By Theorem 8.1.7, there exists a vertex v in G that has degree five or less. $G \backslash v$ is a planar graph smaller than G, so it has a proper 6-coloring.

Color the vertices of $G \backslash v$ with six colors; the neighbors of v in G are colored by at most five different colors.

We can color v with a color not used to color the neighbors of v, and we have a proper 6 -coloring of G, contradicting the definition of G.

The Five Color Theorem

Theorem. Let G be a planar graph.
There exists a proper 5 -coloring of G.
Proof. Let G be a the smallest planar graph (by number of vertices) that has no proper 5-coloring.

By Theorem 8.1.7, there exists a vertex v in G that has degree five or less. $G \backslash v$ is a planar graph smaller than G, so it has a proper 5 -coloring.

Color the vertices of $G \backslash v$ with five colors; the neighbors of v in G are colored by at most five different colors.

If they are colored with only four colors,
we can color v with a color not used to color the neighbors of v, and we have a proper 5 -coloring of G, contradicting the definition of G.

The Kempe Chains Argument

Otherwise the neighbors of v are all colored differently.
We will modify the coloring on $G \backslash v$ so only four colors are used.
Construct the subgraphs $H_{1,3}$ and $H_{2,4}$ of $G \backslash v$ as follows:
Let $V_{1,3}$ be the set of vertices in $G \backslash v$ colored with colors 1 or 3 .
Let $V_{2,4}$ be the set of vertices in $G \backslash v$ colored with colors 2 or 4 .
Let $H_{1,3}$ be the induced subgraph of G on $V_{1,3}$. (Define $H_{2,4}$ similarly)

${ }^{2} 23$

The Kempe Chains Argument

Definition. A Kempe chain is a path in $G \backslash v$ between two non-consecutive neighbors of v such that the colors on the vertices of the path alternate between the colors on those two neighbors.

In our example, $v_{3} \rightarrow v_{7} \rightarrow v_{8} \rightarrow v_{9} \rightarrow v_{10} \rightarrow v_{1}$ is a Kempe chain: colors alternate between red and green \& v_{1} and v_{3} not consecutive.

For any two non-consecutive neighbors of v, (such as: v_{2} and v_{4}.) We ask: Are v_{2} and v_{4} in the same component of $H_{2,4}$?

- If they are, there is a Kempe chain between v_{2} and v_{4}.
- If not, we can swap colors 2 and 4 in one component \mathcal{C} of $H_{2,4}$.

The Kempe Chains Argument

Claim. Swapping colors in \mathcal{C} is still a proper coloring of $G \backslash v$.
Proof. We need to check that this recoloring is still proper. The only adjacencies we have to check are within \mathcal{C} and with neighbors of \mathcal{C}.
\mathcal{C} is a bipartite graph with vertices of color 2 and 4 .
Swapping colors does not change this. Adjacent vertices in the newly colored \mathcal{C} will be colored differently.

By construction, neighboring vertices in $G \backslash \mathcal{C}$ are not colored 2 or 4, so they do not present any conflicts before AND after recoloring. \square

The Kempe Chains Argument

So either there is a Kempe chain between v_{2} and v_{4} or we can swap colors so that v 's neighbors are colored only using four colors. Similarly, either there is a Kempe chain between v_{1} and v_{3} or we can swap colors to color v's neighbors with only four colors.

Question. Can we have both a $v_{1}-v_{3}$ and a $v_{2}-v_{4}$ Kempe chain?

There are no edge crossings in the graph drawing, so there would exist a vertex \qquad .

This can not exist, so it must be possible to swap colors and be able to place a fifth color on v, contradicting the definition of G.

