Modifications of Graphs

Definition. Deletion

 $G \setminus v$ (G delete v): Remove v from the graph and all incident edges.

 $G \setminus e$ (G delete e): Remove e from the graph.

Modifications of Graphs

Definition. Deletion

 $G \setminus v$ (G delete v): Remove v from the graph and all incident edges.

 $G \setminus e$ (G delete e): Remove e from the graph.

Definition. Contraction

G/e (G contract e): If e = vw, coalesce v and w into a super-vertex adjacent to all neighbors of v and w. [This may produce a multigraph.]

Modifications of Graphs

Definition. Deletion

 $G \setminus v$ (G delete v): Remove v from the graph and all incident edges. $G \setminus e$ (G delete e): Remove e from the graph.

Definition. Contraction

G/e (G contract e): If e = vw, coalesce v and w into a super-vertex adjacent to all neighbors of v and w. [This may produce a multigraph.]

Definition. A graph H is a **minor** of a graph G if H can be obtained from G by a sequence of edge deletions and/or edge contractions. ["Minor" suggests smaller: H is smaller than G.]

Modifications of Graphs

Definition. Deletion

 $G \setminus v$ (G delete v): Remove v from the graph and all incident edges.

 $G \setminus e$ (G delete e): Remove e from the graph.

Definition. Contraction

G/e (G contract e): If e = vw, coalesce v and w into a super-vertex adjacent to all neighbors of v and w. [This may produce a multigraph.]

Definition. A graph H is a **minor** of a graph G if H can be obtained from G by a sequence of edge deletions and/or edge contractions. ["Minor" suggests smaller: H is smaller than G.]

Note. Any subgraph of G is also a minor of G.

Modifications of Graphs

Definition. A **subdivision** of an edge *e* is the replacement of *e* by a path of length *at least* two. [Like adding vertices in the middle of *e*.]

Modifications of Graphs

Definition. A **subdivision** of an edge *e* is the replacement of *e* by a path of length *at least* two. [Like adding vertices in the middle of *e*.]

Definition. A **subdivision** of a graph H is the result of zero or more sequential subdivisions of edges of H.

Modifications of Graphs

Definition. A **subdivision** of an edge *e* is the replacement of *e* by a path of length *at least* two. [Like adding vertices in the middle of *e*.]

Definition. A **subdivision** of a graph H is the result of zero or more sequential subdivisions of edges of H.

Note. If G is a subdivision of H, then G is at least as large as H.

Modifications of Graphs

Definition. A **subdivision** of an edge *e* is the replacement of *e* by a path of length *at least* two. [Like adding vertices in the middle of *e*.]

Definition. A **subdivision** of a graph H is the result of zero or more sequential subdivisions of edges of H.

Note. If G is a subdivision of H, then G is at least as large as H.

Note. If G is a subdivision of H, then H is a minor of G. (Contract any edges that had been subdivided!)

Modifications of Graphs

Definition. A **subdivision** of an edge *e* is the replacement of *e* by a path of length *at least* two. [Like adding vertices in the middle of *e*.]

Definition. A **subdivision** of a graph H is the result of zero or more sequential subdivisions of edges of H.

Note. If G is a subdivision of H, then G is at least as large as H.

Note. If G is a subdivision of H, then H is a minor of G. (Contract any edges that had been subdivided!)

Note. The converse is not necessarily true.

Theorem. Let H be a subgraph of G. If H is nonplanar, then G is nonplanar.

Theorem. Let G be a subdivision of H. If H is nonplanar, then G is nonplanar.

Corollary. If G contains a subdivision of a nonplanar graph, then G is nonplanar.

Theorem. Let H be a subgraph of G. If H is nonplanar, then G is nonplanar.

Theorem. Let G be a subdivision of H. If H is nonplanar, then G is nonplanar.

Corollary. If G contains a subdivision of a nonplanar graph, then G is nonplanar.

Theorem. (Kuratowski, 1930) A graph is planar if and only if it contains no subdivision of K_5 or $K_{3,3}$.

Theorem. Let H be a subgraph of G. If H is nonplanar, then G is nonplanar.

Theorem. Let G be a subdivision of H. If H is nonplanar, then G is nonplanar.

Corollary. If G contains a subdivision of a nonplanar graph, then G is nonplanar.

Theorem. (Kuratowski, 1930) A graph is planar if and only if it contains no subdivision of K_5 or $K_{3,3}$.

Theorem. (Kuratowski variant) A graph G is planar if and only if neither K_5 nor $K_{3,3}$ is a minor of G.

Theorem. Let H be a subgraph of G. If H is nonplanar, then G is nonplanar.

Theorem. Let G be a subdivision of H. If H is nonplanar, then G is nonplanar.

Corollary. If G contains a subdivision of a nonplanar graph, then G is nonplanar.

Theorem. (Kuratowski, 1930) A graph is planar if and only if it contains no subdivision of K_5 or $K_{3,3}$.

Theorem. (Kuratowski variant) A graph G is planar if and only if neither K_5 nor $K_{3,3}$ is a minor of G.

- \blacktriangleright To prove that a graph G is planar, find a planar embedding of G.
- ▶ To prove that a graph G is non-planar, (a) Use $q \le 3p 6$, or

- \blacktriangleright To prove that a graph G is planar, find a planar embedding of G.
- ▶ To prove that a graph G is non-planar, (a) Use $q \le 3p 6$, or (b) find a subgraph of G that is isomorphic to a subdivision of K_5 or $K_{3,3}$, or

- \blacktriangleright To prove that a graph G is planar, find a planar embedding of G.
- ▶ To prove that a graph G is non-planar, (a) Use $q \le 3p 6$, or (b) find a subgraph of G that is isomorphic to a subdivision of K_5 or $K_{3,3}$, or (c) successively delete and contract edges of G to show that K_5 or $K_{3,3}$ is a minor of G.

- \blacktriangleright To prove that a graph G is planar, find a planar embedding of G.
- ▶ To prove that a graph G is non-planar, (a) Use $q \le 3p 6$, or (b) find a subgraph of G that is isomorphic to a subdivision of K_5 or $K_{3,3}$, or (c) successively delete and contract edges of G to show that K_5 or $K_{3,3}$ is a minor of G.
- ▶ Practice on the Petersen graph. (Here, have some copies!)

