Modifications of Graphs

Definition. Deletion

$G \backslash v(G$ delete $v)$: Remove v from the graph and all incident edges.
$G \backslash e(G$ delete $e)$: Remove e from the graph.

Modifications of Graphs

Definition. Deletion

$G \backslash v(G$ delete $v)$: Remove v from the graph and all incident edges.
$G \backslash e(G$ delete $e)$: Remove e from the graph.

Definition. Contraction

$G / e(G$ contract $e)$: If $e=v w$, coalesce v and w into a super-vertex adjacent to all neighbors of v and w. [This may produce a multigraph.]

Modifications of Graphs

Definition. Deletion

$G \backslash v(G$ delete $v)$: Remove v from the graph and all incident edges.
$G \backslash e(G$ delete $e)$: Remove e from the graph.

Definition. Contraction

$G / e(G$ contract $e)$: If $e=v w$, coalesce v and w into a super-vertex adjacent to all neighbors of v and w. [This may produce a multigraph.]

Definition. A graph H is a minor of a graph G if H can be obtained from G by a sequence of edge deletions and/or edge contractions. ["Minor" suggests smaller: H is smaller than G.]

Modifications of Graphs

Definition. Deletion

$G \backslash v(G$ delete $v)$: Remove v from the graph and all incident edges.
$G \backslash e(G$ delete $e)$: Remove e from the graph.

Definition. Contraction

$G / e(G$ contract $e)$: If $e=v w$, coalesce v and w into a super-vertex adjacent to all neighbors of v and w. [This may produce a multigraph.]

Definition. A graph H is a minor of a graph G if H can be obtained from G by a sequence of edge deletions and/or edge contractions. ["Minor" suggests smaller: H is smaller than G.]
Note. Any subgraph of G is also a minor of G.

Modifications of Graphs

Definition. A subdivision of an edge e is the replacement of e by a path of length at least two. [Like adding vertices in the middle of e.]

Modifications of Graphs

Definition. A subdivision of an edge e is the replacement of e by a path of length at least two. [Like adding vertices in the middle of e.]

Definition. A subdivision of a graph H is the result of zero or more sequential subdivisions of edges of H.

Modifications of Graphs

Definition. A subdivision of an edge e is the replacement of e by a path of length at least two. [Like adding vertices in the middle of e.]

Definition. A subdivision of a graph H is the result of zero or more sequential subdivisions of edges of H.

Note. If G is a subdivision of H, then G is at least as large as H.

Modifications of Graphs

Definition. A subdivision of an edge e is the replacement of e by a path of length at least two. [Like adding vertices in the middle of e.]

Definition. A subdivision of a graph H is the result of zero or more sequential subdivisions of edges of H.

Note. If G is a subdivision of H, then G is at least as large as H.
Note. If G is a subdivision of H, then H is a minor of G. (Contract any edges that had been subdivided!)

Modifications of Graphs

Definition. A subdivision of an edge e is the replacement of e by a path of length at least two. [Like adding vertices in the middle of e.]

Definition. A subdivision of a graph H is the result of zero or more sequential subdivisions of edges of H.

Note. If G is a subdivision of H, then G is at least as large as H.
Note. If G is a subdivision of H, then H is a minor of G. (Contract any edges that had been subdivided!)

Note. The converse is not necessarily true.

Kuratowski's Theorem

Theorem. Let H be a subgraph of G. If H is nonplanar, then G is nonplanar.
Theorem. Let G be a subdivision of H. If H is nonplanar, then G is nonplanar.
Corollary. If G contains a subdivision of a nonplanar graph, then G is nonplanar.

Kuratowski's Theorem

Theorem. Let H be a subgraph of G. If H is nonplanar, then G is nonplanar.
Theorem. Let G be a subdivision of H. If H is nonplanar, then G is nonplanar.
Corollary. If G contains a subdivision of a nonplanar graph, then G is nonplanar.

Theorem. (Kuratowski, 1930) A graph is planar if and only if it contains no subdivision of K_{5} or $K_{3,3}$.

Kuratowski's Theorem

Theorem. Let H be a subgraph of G. If H is nonplanar, then G is nonplanar.
Theorem. Let G be a subdivision of H. If H is nonplanar, then G is nonplanar.
Corollary. If G contains a subdivision of a nonplanar graph, then G is nonplanar.

Theorem. (Kuratowski, 1930) A graph is planar if and only if it contains no subdivision of K_{5} or $K_{3,3}$.
Theorem. (Kuratowski variant) A graph G is planar if and only if neither K_{5} nor $K_{3,3}$ is a minor of G.

Kuratowski's Theorem

Theorem. Let H be a subgraph of G. If H is nonplanar, then G is nonplanar.
Theorem. Let G be a subdivision of H. If H is nonplanar, then G is nonplanar.
Corollary. If G contains a subdivision of a nonplanar graph, then G is nonplanar.

Theorem. (Kuratowski, 1930) A graph is planar if and only if it contains no subdivision of K_{5} or $K_{3,3}$.
Theorem. (Kuratowski variant) A graph G is planar if and only if neither K_{5} nor $K_{3,3}$ is a minor of G.

Kuratowski's Theorem

- To prove that a graph G is planar, find a planar embedding of G.
- To prove that a graph G is non-planar, (a) Use $q \leq 3 p-6$, or

Kuratowski's Theorem

- To prove that a graph G is planar, find a planar embedding of G.
- To prove that a graph G is non-planar, (a) Use $q \leq 3 p-6$, or (b) find a subgraph of G that is isomorphic to a subdivision of K_{5} or $K_{3,3}$, or

Kuratowski's Theorem

- To prove that a graph G is planar, find a planar embedding of G.
- To prove that a graph G is non-planar, (a) Use $q \leq 3 p-6$, or (b) find a subgraph of G that is isomorphic to a subdivision of K_{5} or $K_{3,3}$, or (c) successively delete and contract edges of G to show that K_{5} or $K_{3,3}$ is a minor of G.

Kuratowski's Theorem

- To prove that a graph G is planar, find a planar embedding of G.
- To prove that a graph G is non-planar, (a) Use $q \leq 3 p-6$, or (b) find a subgraph of G that is isomorphic to a subdivision of K_{5} or $K_{3,3}$, or (c) successively delete and contract edges of G to show that K_{5} or $K_{3,3}$ is a minor of G.
- Practice on the Petersen graph. (Here, have some copies!)

