MATH 636, Fall 2015 Homework 14

To be prepared for presentation on Thursday, November 19.

Background reading: Combinatorics: A Guided Tour, Section 4.1 plus additional material. **Only** consult with your classmates or professor to discuss the problem set.

We will discuss solutions to these questions in class.

- 14-1. Two combinatorial interpretations of the *q*-binomial coefficients are given on page 124 of the course notes.
 - (a) Show that for the permutations π of the multiset $\{1^2, 2^3\}, \sum_{\pi \in S_{2,3}} q^{\mathsf{inv}(\pi)} = \begin{bmatrix} 5\\ 3 \end{bmatrix}_q$.
 - (b) Show that for the set of lattice paths P from (0,0) to (2,3), $\sum_{P \in \mathcal{P}} q^{\mathsf{area}(P)} = \begin{bmatrix} 5\\ 3 \end{bmatrix}_q$.

14-2. Let C_n denote the set of compositions of n. For any composition c, define the statistic parts(c) to be the number of parts of c. [In other words, if c is the composition $c_1 + c_2 + \cdots + c_k$, then parts(c) = k.]

- (a) Compute $f_n(q) = \sum_{c \in \mathcal{C}_n} q^{\mathsf{parts}(c)}$.
- (b) Use your answer to part (a) to show directly $\lim_{q \to 1} f_n(q) = 2^{n-1}$.

[Note: We expect part (b) to be true because we know there are 2^{n-1} compositions of n, and part (a) is constructing a q-analog.]