MATH 636, Fall 2015

Homework 14
To be prepared for presentation on Thursday, November 19.
Background reading: Combinatorics: A Guided Tour, Section 4.1 plus additional material. Only consult with your classmates or professor to discuss the problem set. We will discuss solutions to these questions in class.

14-1. Two combinatorial interpretations of the q-binomial coefficients are given on page 124 of the course notes.
(a) Show that for the permutations π of the multiset $\left\{1^{2}, 2^{3}\right\}, \sum_{\pi \in S_{2,3}} q^{\operatorname{inv}(\pi)}=\left[\begin{array}{l}5 \\ 3\end{array}\right]_{q}$.
(b) Show that for the set of lattice paths P from $(0,0)$ to $(2,3), \sum_{P \in \mathcal{P}} q^{\operatorname{area}(P)}=\left[\begin{array}{l}5 \\ 3\end{array}\right]_{q}$.

14-2. Let \mathcal{C}_{n} denote the set of compositions of n.
For any composition c, define the statistic parts (c) to be the number of parts of c.
[In other words, if c is the composition $c_{1}+c_{2}+\cdots+c_{k}$, then parts $(c)=k$.]
(a) Compute $f_{n}(q)=\sum_{c \in \mathcal{C}_{n}} q^{\text {parts }(c)}$.
(b) Use your answer to part (a) to show directly $\lim _{q \rightarrow 1} f_{n}(q)=2^{n-1}$.
[Note: We expect part (b) to be true because we know there are 2^{n-1} compositions of n, and part (a) is constructing a q-analog.]

