MATH 636, Fall 2015
Homework 5
To be prepared for presentation on Thursday, September 25.
Background reading: Combinatorics: A Guided Tour, Sections 1.3-1.4.
Only consult with your classmates or professor to discuss the problem set.
We will discuss solutions to these questions in class.
5-1. (a) Let f be a well-defined function from A to B and let g be a well-defined function from B to A. Suppose that $g(f(a))=a$ for all $a \in A$. Show that it is not necessarily the case that f is a bijection between A and B.
(b) Let f be a well-defined function from A to B and let g be a well-defined function from B to A. Suppose that $g(f(a))=a$ for all $a \in A$ and $f(g(b))=b$ for all $b \in B$. Prove that f is a bijection between A and B.
[Important: You must use the definition of bijection.]
5-2. (a) Use the equivalence principle to solve Exercise 1.4.15.
(b) Write a paragraph explaining why we can not use the equivalence principle to count the number of different necklaces where two of the n beads are indistinguishable (the same color, for example).

