Math 636 Exam 2
4 Dec 2014
60 points total
Show all work for full or partial credit.

Name: \qquad
Problem Scores

1	$/ 10$		4	$/ 10$
2	$/ 15$		5	$/ 5$
3	$/ 10$		6	$/ 10$

Total Score:
Exam Grade:
Projected Course Grade:

Do not spend too much time on any one problem.

1. (10 pts) In the Foxtrot comic above, Marcus starts listing the terms of a sequence ($s_{0}=3$, $s_{1}=0$, etc.) that satisfies the recurrence $s_{n}=s_{n-2}+s_{n-3}$. Determine a compact form for the generating function $\sum_{n \geq 0} s_{n} x^{n}$.
[Important: Do NOT find a formula for s_{n}.]

(Question 1 is on the other side!)

2. (15 pts) (QuAQ's) Quick answer questions.
[Explanations are not required, but may get you partial credit.]
(a) (5 pts) Solve for the coefficient of x^{k} of $f(x)=\frac{1}{4-x}+e^{x}$.
(b) (5 pts) Give the compact form of the generating function for the number of partitions of n such that each part is a square number. (For example, 9441 is OK but 8541 is not.)
(c) (5 pts) Suppose that λ is a partition of $n \geq 2$ with no parts of size 1 . What must be true about λ^{c}, its conjugate partition?
3. (a) (5 pts) How many triangulations of a regular 8-gon are there? Write your answer as an expression involving a binomial coefficient.
(b) (5 pts) Draw a triangulation of a regular 8-gon, and use a Catalan bijection from class to determine the corresponding multiplication scheme.
4. (10 pts) The generating function $\sum_{k \geq 0} C_{k} x^{k}$ for the Catalan numbers satisfies the functional equation

$$
C(x)=1+x C(x)^{2} .
$$

(a) Use convolution to find an explicit expression for the coefficient of x^{n} of both sides of this equation.
(b) Use the recurrence relation that arises by equating the coefficients in part (a) to show that the fourth Catalan number is $C_{4}=14$.
5. (5 pts) Give the precise definition of a combinatorial statistic.
6. (10 pts) Consider the set S of permutations of the multiset $\{1,1,2,3\}$. Show that

$$
\sum_{\pi \in S} q^{\operatorname{inv}(\pi)}=\left[\begin{array}{c}
4 \\
2,1,1
\end{array}\right]_{q}=\frac{[4]_{q}!}{[2]_{q}![1]_{q}![1]_{q}!}
$$

