Course Notes

Combinatorics, Fall 2015

Queens College, Math 636

Prof. Christopher Hanusa

http://qc.edu/~chanusa/courses/636/15/

Reference List

The following are books that I recommend to complement this course. They are on reserve in the library.

Benjamin and Quinn. Proofs that really count. Bóna. A walk through combinatorics.
Brualdi. Introductory combinatorics.
Graham, Knuth, and Patashnik. Concrete mathematics.
Mazur. Combinatorics: A guided tour
van Lint and Wilson. A course in combinatorics.

What is combinatorics?

In this class: Learn how to count ... better.
Question: How many domino tilings are there of an 8×8 chessboard?

A domino tiling is a placement of dominoes on a region, where

- Each domino covers two squares.
- The dominoes cover the whole region and do not overlap.

Domino tilings

How to determine the "answer"?

- Convert the chessboard into a combinatorial structure (a graph).
- Represent the graph numerically as a matrix.
- Take the determinant of this matrix.
- Use the structure of the matrices to determine their eigenvalues.

Question: How many domino tilings are there of an $m \times n$ board?
Answer: If m and n are both even, then we have the formula (!):

$$
\prod_{j=1}^{m / 2} \prod_{k=1}^{n / 2}\left(4 \cos ^{2} \frac{\pi j}{m+1}+4 \cos ^{2} \frac{\pi k}{n+1}\right)
$$

Combinatorial questions

Given some discrete objects, what properties and structures do they have?

- Can we count the arrangements?
- Count means give a number.
- Can we enumerate the arrangements?
- Enumerate means give a description or list.
- Do any arrangements have a certain property?
- This is an existence question.
- Can we construct arrangements having some property?
- We need to find a method of construction.
- Does there exist a "best" arrangement?
- Prove optimality.

Mastering "Combinatorics" means internalizing many different techniques and strategies to know the best way to approach any counting question. We will develop our toolbox.

Uses a different kind of reasoning than in other math classes.

To do well in this class:

- Come to class prepared.
- Print out and read over course notes.
- Read sections before class.
- Form good study groups.
- Discuss homework and classwork.
- Bounce proof ideas around.
- You will depend on this group.
- Put in the time.
- Three credits $=$ (at least) nine hours / week out of class.
- Homework stresses key concepts from class; learning takes time.
- Stay in contact.
- If you are confused, ask questions (in class and out).
- Don't fall behind in coursework or project.
- I need to understand your concerns.

All homeworks online. Email me by Tuesday, 1st hwk due Thursday.

Numbers are everywhere

Arrange yourselves into groups of four people, With people you don't know.

- Introduce yourself. (your name, where you are from)
- What brought you to this class?
- Fill out the front of your notecard:
- Write your name. (Stylize if you wish.)
- Write some words about how I might remember you \& your name.
- Draw something (anything!) in the remaining space.
- Exchange contact information. (phone / email / other)
- Small talk suggestion: What kept you busy this summer?

Four Counting Questions (p. 2)

Here are four counting questions.
Q1. How many 8 -character passwords are there using $A-Z, a-z, 0-9$?
Q2. In how many ways can a baseball manager order nine fixed baseball players in a lineup?

Q3. How many Pick-6 lottery tickets are there?
(Choose six numbers between 1-40.)
Q4. How many possible orders for a dozen donuts are there when the store has 30 varieties?

Group discussion: Use your powers of estimation to order these from smallest to largest.

Counting words

Definition: A list or word is an ordered sequence of objects.
Definition: A k-list or k-word is a list of length k.

- A list or word is always ordered and a set is always unordered.

Question: How many lists have three entries where

- The first two entries can be either A or B.
- The last entry is either 5 or 6 .

Answer: We can solve this using a tree diagram:
Alternatively: Notice two independent choices for each character. Multiply $2 \cdot 2 \cdot 2=8$.

The Product Principle

This illustrates:
The product principle: When counting lists $\left(l_{1}, l_{2}, \ldots, l_{k}\right)$,
IF there are c_{1} choices for entry l_{1}, each leading to a different list,
AND IF there are c_{i} choices for entry l_{i}, no matter the choices made for I_{1} through l_{i-1}, each leading to a different list
THEN there are $c_{1} c_{2} \cdots c_{k}$ such lists.

Caution: The product principle seems simple, but we must be careful when we use it.

Lists WITH repetition

Q1. How many 8-character passwords are there using $A-Z, a-z, 0-9$?
Answer: Creating a word of length 8, with ___ choices for each character. Therefore, the number of 8 -character passwords is \qquad .

$$
(=218,340,105,584,896)
$$

In general, the number of words of length k that can be made from an alphabet of length n and where repetition is allowed is n^{k}

Application: Counting Subsets

Example. How many subsets of a set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ are there?
Strategy: "Try small problems, see a pattern."

- $n=0: S=\emptyset \rightsquigarrow\{\emptyset\}$, size 1 .
- $n=1: S=\left\{s_{1}\right\} \rightsquigarrow\left\{\emptyset,\left\{s_{1}\right\}\right\}$, size 2 .
- $n=2: S=\left\{s_{1}, s_{2}\right\} \rightsquigarrow\left\{\emptyset,\left\{s_{1}\right\},\left\{s_{2}\right\},\left\{s_{1}, s_{2}\right\}\right\}$, size 4 .
- $n=3: S=\left\{s_{1}, s_{2}, s_{3}\right\} \rightsquigarrow\left\{\begin{array}{ccc}\emptyset, & \left\{s_{1}\right\}, & \left\{s_{2}\right\}, \\ \left\{s_{3}\right\}, & \left\{s_{1}, s_{3}\right\}, & \left\{s_{2}, s_{2}\right\}, \\ \left.s_{3}\right\}, & \left\{s_{1}, s_{2}, s_{3}\right\}\end{array}\right\}, 8$.

It appears that the number of subsets of S is \qquad .

This number also counts \qquad .

We can label the subsets by whether or not they contain s_{i}.
For example, for $n=3$, we label the subsets $\left\{\begin{array}{l}000,100,010,110, \\ 001,101,011,111\end{array}\right\}$

Permutations

Q2. In how many ways can a baseball manager order nine fixed baseball players in a lineup?

Answer: The number of choices for each lineup spot are:

Multiplying gives that the number of lineups is $\quad{ }_{Z}=362,880$.
Definition: A permutation of an n-set S is an (ordered) list of all elements of S. There are $n!$ such permutations.
Definition: A k-permutation of an n-set S is an (ordered) list of k distinct elements of S. How many are there?

- "Permutation" always refers to a list without repetition.

Lists WITHOUT repetition

Question: How many 8-character passwords are there using $A-Z$, $a-z, 0-9$, containing no repeated character?

OK: 2eas3FGS, 10293465 Not OK: 2kdjfng2, oOoOoOo0
Answer: The number of choices for each character are:
for a total of $(62)_{8}=\frac{62!}{54!}$ passwords.
In general, the number of words of length k that can be made from an alphabet of length n and where repetition is NOT allowed is $(n)_{k}$.

- That is, the number of k-permutations of an n-set is $(n)_{k}$.
- Special case: For n-permutations of an n-set: $n!$.

Notation

Some quantities appear frequently, so we use shorthand notation:
$\checkmark[n]:=\{1,2, \ldots, n\} \quad \mid 2^{S}:=$ set of all subsets of S

- $n!:=n \cdot(n-1) \cdot(n-2) \cdots 2 \cdot 1$
- $(n)_{k}:=n \cdot(n-1) \cdot(n-2) \cdots(n-k+1)=\frac{n!}{(n-k)!}$
- $\binom{n}{k}:=\frac{n!}{k!(n-k)!}=\frac{(n)_{k}}{k!}$
- $\left(\binom{n}{k}\right):=\binom{k+n-1}{k}$
* Leave answers to counting questions in terms of these quantities.
* Do NOT multiply out unless you are comparing values.

Counting subsets of a set

My question: In how many ways are there to choose a subset of k objects out of a set of n objects?
Your answer: $\binom{n}{k}$. " n choose k ".
Question: In how many ways can you choose 4 objects out of 10 ?
Q3. How many Pick-6 lottery tickets are there?
(Choose six numbers between 1-40.)

$$
=3,838,380 .
$$

- $\binom{n}{k}$ is called a binomial coefficient.
- Alternate phrasing: How many k-subsets of an n-set are there?
- The individual objects we are counting are unordered.

They are subsets, not lists.

A formula for $\binom{n}{k}$

You may know that $\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{1}{k!}(n)_{k} . \quad$ But why?
Let's rearrange it.

$$
\begin{aligned}
& \text { And prove it! } \\
& (n)_{k}=\binom{n}{k} k!
\end{aligned}
$$

We ask the question:
"In how many ways are there to create a k-list of an n-set?"
LHS:

RHS:

Since we counted the same quantity twice, they must be equal!

Counting Multisets

Definition: A multiset is an unordered collection of elements where repetition is allowed.

- Example. $\{a, a, b, d\}$ is a multiset.

Definition: We say M is a multisubset of a set (or multiset) S if every element of M is an element of S.

- Example. $M=\{a, a, a, b, d\}$ is a multisubset of $S=\{a, b, c, d\}$.

Think Write Pair Share: Enumerate all multisubsets of [3].
[In other words, list them all or completely describe the list.]
Answer:

How would you describe a k-multisubset of $[n]$?

Stars and Bars

Question: How many k-multisets can be made from an n-set?

- is the same as -

Question: How many ways are there to place k indistinguishable balls into n distinguishable bins?

- is the same as -

Question: How many $\{\star, \mid\}$-words contain k stars and ($n-1$) bars?

- which we can count by: -

Question: How many ways are there to choose k star positions out of $k+n-1$?

Answering Q1-Q4

Q4. How many possible orders for a dozen donuts are there when the store has 30 varieties?
Answer: $(())=(\quad)=7,898,654,920$.
Correct order:
Q2. Order 9 baseball players (9!)
362,880
$3,838,380$
$7,898,654,920$
$218,340,105,584,896$

Summary

	order matters (choose a list)	order doesn't matter (choose a set)
repetition allowed		
repetition not allowed		

