Counting integral solutions

Question: How many non-negative integer solutions are there of $x_{1}+x_{2}+x_{3}+x_{4}=10 ?$

Counting integral solutions

Question: How many non-negative integer solutions are there of $x_{1}+x_{2}+x_{3}+x_{4}=10 ?$

- Give some examples of solutions.
- Characterize what solutions look like.
- A combinatorial object with a similar flavor is:

Counting integral solutions

Question: How many non-negative integer solutions are there of $x_{1}+x_{2}+x_{3}+x_{4}=10 ?$

- Give some examples of solutions.
- Characterize what solutions look like.
- A combinatorial object with a similar flavor is:

In general, the number of non-negative integer solutions to
$x_{1}+x_{2}+\cdots+x_{n}=k$ is \qquad

Counting integral solutions

Question: How many non-negative integer solutions are there of $x_{1}+x_{2}+x_{3}+x_{4}=10 ?$

- Give some examples of solutions.
- Characterize what solutions look like.
- A combinatorial object with a similar flavor is:

In general, the number of non-negative integer solutions to $x_{1}+x_{2}+\cdots+x_{n}=k$ is \qquad .

Question: How many positive integer solutions are there of $x_{1}+x_{2}+x_{3}+x_{4}=10$, where $x_{4} \geq 3$?

The sum principle

Often it makes sense to break down your counting problem into smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes?

The sum principle

Often it makes sense to break down your counting problem into smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes?
Answer: Condition on how many digits.

- Length 1:
- Length 2 :
- Length 3:
- Length 4:
- Length 5,6:
- Total:

The sum principle

Often it makes sense to break down your counting problem into smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes?
Answer: Condition on how many digits.

- Length 1 :
- Length 2 :
- Length 3:
- Length 4:
- Length 5,6:
- Total:
\star Every palindrome between 1 and 999999 is counted once.

The sum principle

Often it makes sense to break down your counting problem into smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes?
Answer: Condition on how many digits.

- Length 1 :
- Length 2:
- Length 3:
- Length 4:
- Length 5,6:
- Total:
* Every palindrome between 1 and 999999 is counted once.

This illustrates the sum principle:
Suppose the objects to be counted can be broken into k disjoint and exhaustive cases. If there are n_{j} objects in case j, then there are $n_{1}+n_{2}+\cdots+n_{k}$ objects in all.

Counting pitfalls

When counting, there are two common pitfalls:

Counting pitfalls

When counting, there are two common pitfalls:

- Undercounting

Counting pitfalls

When counting, there are two common pitfalls:

- Undercounting
- Overcounting

Counting pitfalls

When counting, there are two common pitfalls:

- Undercounting
- Often, forgetting cases when applying the sum principle.
- Ask: Did I miss something?
- Overcounting

Counting pitfalls

When counting, there are two common pitfalls:

- Undercounting
- Often, forgetting cases when applying the sum principle.
- Ask: Did I miss something?
- Overcounting
- Often, misapplying the product principle.
- Ask: Do cases need to be counted in different ways?
- Ask: Does the same object appear in multiple ways?

Counting pitfalls

When counting, there are two common pitfalls:

- Undercounting
- Often, forgetting cases when applying the sum principle.
- Ask: Did I miss something?
- Overcounting
- Often, misapplying the product principle.
- Ask: Do cases need to be counted in different ways?
- Ask: Does the same object appear in multiple ways?

Common example: A deck of cards.
There are four suits: Diamond \diamond, Heart \circlearrowleft, Club \& , Spade $\boldsymbol{\phi}$.
Each has 13 cards: Ace, King, Queen, Jack, 10, 9, 8, 7, 6, 5, 4, 3, 2.

Counting pitfalls

When counting, there are two common pitfalls:

- Undercounting
- Often, forgetting cases when applying the sum principle.
- Ask: Did I miss something?
- Overcounting
- Often, misapplying the product principle.
- Ask: Do cases need to be counted in different ways?
- Ask: Does the same object appear in multiple ways?

Common example: A deck of cards.
There are four suits: Diamond \diamond, Heart \circlearrowleft, Club \& , Spade $\boldsymbol{\phi}$.
Each has 13 cards: Ace, King, Queen, Jack, 10, 9, 8, 7, 6, 5, 4, 3, 2.
Example. Suppose you are dealt two diamonds between 2 and 10.
In how many ways can the product be even?

Overcounting

Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart \subseteq ?

Overcounting

Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down.
In how many ways can the face-down card be an Ace and the face-up card be a Heart \triangle ?
Answer: There are \qquad aces, so there are \qquad choices for the down card.

Overcounting

Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down.
In how many ways can the face-down card be an Ace and the face-up card be a Heart V ?
Answer: There are \qquad aces, so there are \qquad choices for the down card. There are _ hearts, so there are \qquad choices for the up card.

Overcounting

Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down.
In how many ways can the face-down card be an Ace and the face-up card be a Heart D ?
Answer: There are __ aces, so there are __ choices for the down card. There are __ hearts, so there are ___ choices for the up card. By the product principle, there are 52 ways in all.

Overcounting

Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down.
In how many ways can the face-down card be an Ace and the face-up card be a Heart \triangle ?
Answer: There are __ aces, so there are __ choices for the down card. There are __ hearts, so there are ___ choices for the up card.
By the product principle, there are 52 ways in all.
Except:

Overcounting

Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart V ?
Answer: There are __ aces, so there are __ choices for the down card. There are __ hearts, so there are ___ choices for the up card.
By the product principle, there are 52 ways in all.
Except:

Remember to ask: Do cases need to be counted in different ways?

Overcounting

Example. How many 4-lists taken from [9] have at least one pair of adjacent elements equal?
Examples: 1114, 1229, $5555 \quad$ Non-examples: 1231, 9898.

Overcounting

Example. How many 4-lists taken from [9] have at least one pair of adjacent elements equal?
Examples: 1114, 1229, $5555 \quad$ Non-examples: 1231, 9898.

Strategy:

1. Choose where the adjacent equal elements are.
2. Choose which number they are.
(___ ways)
3. Choose the numbers for the remaining elements.

Overcounting

Example. How many 4-lists taken from [9] have at least one pair of adjacent elements equal?
Examples: 1114, 1229, $5555 \quad$ Non-examples: 1231, 9898.

Strategy:

1. Choose where the adjacent equal elements are.
2. Choose which number they are.
3. Choose the numbers for the remaining elements. (___ ways)

By the product principle, there are ___ ways in all.

Overcounting

Example. How many 4-lists taken from [9] have at least one pair of adjacent elements equal?
Examples: 1114, 1229, $5555 \quad$ Non-examples: 1231, 9898.

Strategy:

1. Choose where the adjacent equal elements are.
2. Choose which number they are.
3. Choose the numbers for the remaining elements. (___ ways)

By the product principle, there are \qquad ways in all.

Except:

Overcounting

Example. How many 4-lists taken from [9] have at least one pair of adjacent elements equal?
Examples: 1114, 1229, $5555 \quad$ Non-examples: 1231, 9898.

Strategy:

1. Choose where the adjacent equal elements are.
2. Choose which number they are.
3. Choose the numbers for the remaining elements. (___ ways)

By the product principle, there are ___ ways in all.

Except:

Remember to ask: Does the same object appear in multiple ways?

Counting the complement

Q1: How many 4-lists taken from [9] have at least one pair of adjacent elements equal?
-Compare this to-
Q2: How many 4-lists taken from [9] have no pairs of adjacent elements equal?

What can we say about:
Q1:
Q2:

Counting the complement

Q1: How many 4-lists taken from [9] have at least one pair of adjacent elements equal?
-Compare this to-
Q2: How many 4-lists taken from [9] have no pairs of adjacent elements equal?

What can we say about:
Q1:
Q2:
Together:
Q3:

Counting the complement

Q1: How many 4-lists taken from [9] have at least one pair of adjacent elements equal?
-Compare this to-
Q2: How many 4-lists taken from [9] have no pairs of adjacent elements equal?

What can we say about:
Q1:
Q2:
Together:
Q3:

Strategy: It is sometimes easier to count the complement.
Answer to Q3:

Counting the complement

Q1: How many 4-lists taken from [9] have at least one pair of adjacent elements equal?
-Compare this to-
Q2: How many 4-lists taken from [9] have no pairs of adjacent elements equal?

What can we say about:
Q1:
Q2:
Together:
Q3:

Strategy: It is sometimes easier to count the complement.
Answer to Q3:
Answer to Q2:

Counting the complement

Q1: How many 4-lists taken from [9] have at least one pair of adjacent elements equal?
-Compare this to-
Q2: How many 4-lists taken from [9] have no pairs of adjacent elements equal?

What can we say about:
Q1:
Q2:
Together:
Q3:

Strategy: It is sometimes easier to count the complement.
Answer to Q3:
Answer to Q2:
Answer to Q1:

Poker hands

Example. When playing five-card poker, what is the probability that you are dealt a full house?
[Three cards of one type and two cards of another type.] 555 K K
Game plan:

Poker hands

Example. When playing five-card poker, what is the probability that you are dealt a full house?
[Three cards of one type and two cards of another type.] 555 K K

Game plan:

- Count the total number of hands.
- Count the number of possible full houses.
- Divide to find the probability.

Poker hands

Example. When playing five-card poker, what is the probability that you are dealt a full house?
[Three cards of one type and two cards of another type.] 555 K K

Game plan:

- Count the total number of hands.
- Count the number of possible full houses.
- Choose the denomination of the three-of-a-kind.
- Choose which three suits they are in.
- Divide to find the probability.

Poker hands

Example. When playing five-card poker, what is the probability that you are dealt a full house?
[Three cards of one type and two cards of another type.] 555 K K

Game plan:

- Count the total number of hands.
- Count the number of possible full houses.
- Choose the denomination of the three-of-a-kind.
- Choose which three suits they are in.
- Choose the denomination of the pair.
- Choose which two suits they are in.
- Apply the multiplication principle.
- Divide to find the probability.

Poker hands

Example. When playing five-card poker, what is the probability that you are dealt a full house?
[Three cards of one type and two cards of another type.] 555 K K

Game plan:

- Count the total number of hands.
- Count the number of possible full houses.
- Choose the denomination of the three-of-a-kind.
- Choose which three suits they are in.
- Choose the denomination of the pair.
- Choose which two suits they are in.
- Apply the multiplication principle. Total:
- Divide to find the probability.

Poker hands

Example. When playing five-card poker, what is the probability that you are dealt a full house?
[Three cards of one type and two cards of another type.] 555 K K

Game plan:

- Count the total number of hands.
- Count the number of possible full houses.
- Choose the denomination of the three-of-a-kind.
- Choose which three suits they are in.
- Choose the denomination of the pair.
- Choose which two suits they are in.
- Apply the multiplication principle. Total:
- Divide to find the probability.
$\frac{3744}{2598960} \approx 0.14 \%$

Pascal's triangle

Pascal's identity gives us the recurrence $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k.

Pascal's triangle

Pascal's identity gives us the recurrence $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k. $\binom{n}{0}=1$ and $\binom{n}{n}=1$ for all n.

${ }_{n}{ }^{k}$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1		1					
3	1			1				
4	1				1			
5	1					1		
6	1						1	
7	1							1

Pascal's triangle

Pascal's identity gives us the recurrence $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k. $\binom{n}{0}=1$ and $\binom{n}{n}=1$ for all n.

${ }_{n}{ }^{k}$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1			1				
4	1				1			
5	1					1		
6	1						1	
7	1							1

Pascal's triangle

Pascal's identity gives us the recurrence $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k. $\binom{n}{0}=1$ and $\binom{n}{n}=1$ for all n.

${ }_{n}{ }^{k}$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1				1			
5	1					1		
6	1						1	
7	1							1

Pascal's triangle

Pascal's identity gives us the recurrence $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k. $\binom{n}{0}=1$ and $\binom{n}{n}=1$ for all n.

$n{ }^{k}$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1					1		
6	1						1	
7	1							1

Pascal's triangle

Pascal's identity gives us the recurrence $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k. $\binom{n}{0}=1$ and $\binom{n}{n}=1$ for all n.

$n \backslash^{k}$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1	5	10	10	5	1		
6	1	6	15	20	15	6	1	
7	1							1

Pascal's triangle

Pascal's identity gives us the recurrence $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k. $\binom{n}{0}=1$ and $\binom{n}{n}=1$ for all n.

$n{ }^{k}$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1	5	10	10	5	1		
6	1	6	15	20	15	6	1	
7	1							1

Seq's in Pascal's triangle:

$1,2,3,4,5, \ldots$	$\binom{n}{1}$
$\left(a_{n}=n\right)$	
$1,3,6,10,15, \ldots$	$\binom{n}{2}$
triangular $1,4,10,20,35, \ldots$	$\binom{n}{3}$
tetrahedral	
$1,2,6,20,70, \ldots$	$\binom{2 n}{n}$
centr. binom.	

Pascal's triangle

Pascal's identity gives us the recurrence $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k. $\binom{n}{0}=1$ and $\binom{n}{n}=1$ for all n.

$n \backslash^{k}$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1	5	10	10	5	1		
6	1	6	15	20	15	6	1	
7	1							1

Seq's in Pascal's triangle:

$$
\begin{array}{cc}
1,2,3,4,5, \ldots & \binom{n}{1} \\
\left(a_{n}=n\right) & \\
1,300,6,10,15, \ldots & \binom{n}{2} \\
\text { triangular } & \text { A000217 } \\
1,4,10,20,35, \ldots & \binom{n}{3} \\
\text { tetrahedral } & \text { A000292 } \\
1,2,6,20,70, \ldots & \binom{2 n}{n} \\
\text { centr. binom. } & \text { A000984 }
\end{array}
$$

Online Encyclopedia of Integer Sequences: http://oeis.org/

Binomial Theorem

Theorem 2.2.2. Let n be a positive integer. For all x and y,

$$
(x+y)^{n}=x^{n}+\binom{n}{1} x^{n-1} y+\cdots+\binom{n}{n-1} x y^{n-1}+y^{n}
$$

Binomial Theorem

Theorem 2.2.2. Let n be a positive integer. For all x and y,

$$
(x+y)^{n}=x^{n}+\binom{n}{1} x^{n-1} y+\cdots+\binom{n}{n-1} x y^{n-1}+y^{n}
$$

Rewrite in summation notation!
Determine the generic term $\left[\begin{array}{l}n \\ k\end{array}\right) x$ y \quad] and the bounds on k

$$
(x+y)^{n}=\sum
$$

Binomial Theorem

Theorem 2.2.2. Let n be a positive integer. For all x and y,

$$
(x+y)^{n}=x^{n}+\binom{n}{1} x^{n-1} y+\cdots+\binom{n}{n-1} x y^{n-1}+y^{n}
$$

Rewrite in summation notation!
Determine the generic term $\left[\begin{array}{l}n \\ k\end{array}\right) x$ y \quad] and the bounds on k

$$
(x+y)^{n}=\sum
$$

- The entries of Pascal's triangle are the coefficients of terms in the expansion of $(x+y)^{n}$.

Binomial Theorem

Theorem 2.2.2. Let n be a positive integer. For all x and y,

$$
(x+y)^{n}=x^{n}+\binom{n}{1} x^{n-1} y+\cdots+\binom{n}{n-1} x y^{n-1}+y^{n} .
$$

Rewrite in summation notation!
Determine the generic term $\left[\begin{array}{l}n \\ k\end{array}\right) x$ y \quad] and the bounds on k

$$
(x+y)^{n}=\sum
$$

- The entries of Pascal's triangle are the coefficients of terms in the expansion of $(x+y)^{n}$.

Proof. In the expansion of $(x+y)(x+y) \cdots(x+y)$, in how many ways can a term have the form $x^{n-k} y^{k}$?

Binomial Theorem

Theorem 2.2.2. Let n be a positive integer. For all x and y,

$$
(x+y)^{n}=x^{n}+\binom{n}{1} x^{n-1} y+\cdots+\binom{n}{n-1} x y^{n-1}+y^{n} .
$$

Rewrite in summation notation!
Determine the generic term $\left[\begin{array}{l}n \\ k\end{array}\right) x$ y \quad] and the bounds on k

$$
(x+y)^{n}=\sum
$$

- The entries of Pascal's triangle are the coefficients of terms in the expansion of $(x+y)^{n}$.

Proof. In the expansion of $(x+y)(x+y) \cdots(x+y)$, in how many ways can a term have the form $x^{n-k} y^{k}$?
From the n factors $(x+y)$, you must choose a " y " exactly k times.
Therefore, $\binom{n}{k}$ ways. We recover the desired equation.

