Thought exercise — $\S 2.2$

Counting integral solutions

Question: How many non-negative integer solutions are there of $x_1 + x_2 + x_3 + x_4 = 10$?

Counting integral solutions

Question: How many non-negative integer solutions are there of $x_1 + x_2 + x_3 + x_4 = 10$?

- ► Give some examples of solutions.
- ► Characterize what solutions look like.
- ► A combinatorial object with a similar flavor is:

Counting integral solutions

Question: How many non-negative integer solutions are there of $x_1 + x_2 + x_3 + x_4 = 10$?

- ► Give some examples of solutions.
- ▶ Characterize what solutions look like.
- ▶ A combinatorial object with a similar flavor is:

In general, the number of non-negative integer solutions to $x_1 + x_2 + \cdots + x_n = k$ is _____.

Counting integral solutions

Question: How many non-negative integer solutions are there of $x_1 + x_2 + x_3 + x_4 = 10$?

- ► Give some examples of solutions.
- Characterize what solutions look like.
- ► A combinatorial object with a similar flavor is:

In general, the number of non-negative integer solutions to $x_1 + x_2 + \cdots + x_n = k$ is _____.

Question: How many **positive** integer solutions are there of $x_1 + x_2 + x_3 + x_4 = 10$, where $x_4 \ge 3$?

The sum principle

Often it makes sense to break down your counting problem into smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes?

The sum principle

Often it makes sense to break down your counting problem into smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes?

Answer: Condition on how many digits.

► Length 1:

► Length 2:

► Length 3:

► Length 4:

► Length 5,6:

► Total:

The sum principle

Often it makes sense to break down your counting problem into smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes?

Answer: Condition on how many digits.

► Length 1:

► Length 4:

► Length 2:

► Length 5,6:

► Length 3:

► Total:

★ Every palindrome between 1 and 999999 is counted once.

The sum principle

Often it makes sense to break down your counting problem into smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes?

Answer: Condition on how many digits.

► Length 3: ► **Total**:

★ Every palindrome between 1 and 999999 is counted once.

This illustrates the sum principle:

Suppose the objects to be counted can be broken into k disjoint and exhaustive cases. If there are n_j objects in case j, then there are $n_1 + n_2 + \cdots + n_k$ objects in all.

Counting pitfalls

When counting, there are two common pitfalls:

Counting pitfalls

When counting, there are two common pitfalls:

▶ Undercounting

Counting pitfalls

When counting, there are two common pitfalls:

▶ Undercounting

Overcounting

Counting pitfalls

When counting, there are two common pitfalls:

- ▶ Undercounting
 - ▶ Often, forgetting cases when applying the sum principle.
 - Ask: Did I miss something?
- Overcounting

Counting pitfalls

When counting, there are two common pitfalls:

- Undercounting
 - ▶ Often, forgetting cases when applying the sum principle.
 - Ask: Did I miss something?
- Overcounting
 - Often, misapplying the product principle.
 - ► **Ask:** Do cases need to be counted in different ways?
 - ▶ Ask: Does the same object appear in multiple ways?

Counting pitfalls

When counting, there are two common pitfalls:

- Undercounting
 - ▶ Often, forgetting cases when applying the sum principle.
 - Ask: Did I miss something?
- ▶ Overcounting
 - ▶ Often, misapplying the product principle.
 - ▶ Ask: Do cases need to be counted in different ways?
 - Ask: Does the same object appear in multiple ways?

Common example: A deck of cards.

There are four suits: Diamond ♦, Heart ♥, Club ♣, Spade ♠.

Each has 13 cards: Ace, King, Queen, Jack, 10, 9, 8, 7, 6, 5, 4, 3, 2.

Counting pitfalls

When counting, there are two common pitfalls:

- Undercounting
 - ▶ Often, forgetting cases when applying the sum principle.
 - Ask: Did I miss something?
- ▶ Overcounting
 - ▶ Often, misapplying the product principle.
 - ▶ Ask: Do cases need to be counted in different ways?
 - Ask: Does the same object appear in multiple ways?

Common example: A deck of cards.

There are four suits: Diamond ♦, Heart ♥, Club ♣, Spade ♠. Each has 13 cards: Ace, King, Queen, Jack, 10, 9, 8, 7, 6, 5, 4, 3, 2.

Example. Suppose you are dealt two diamonds between 2 and 10. In how many ways can the product be even?

Overcounting

Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart \heartsuit ?

Overcounting

Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart \heartsuit ?

Answer: There are ___ aces, so there are ___ choices for the down card.

Overcounting

Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart ♥?

Answer: There are ___ aces, so there are ___ choices for the down card. There are ___ hearts, so there are ___ choices for the up card.

Overcounting

Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart ♥?

Answer: There are ___ aces, so there are ___ choices for the down card. There are ___ hearts, so there are ___ choices for the up card. By the product principle, there are 52 ways in all.

Overcounting

Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart ♥?

Answer: There are ___ aces, so there are ___ choices for the down card. There are ___ hearts, so there are ___ choices for the up card. By the product principle, there are 52 ways in all.

Except:

Overcounting

Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down. In how many ways can the face-down card be an Ace and the face-up card be a Heart ♥?

Answer: There are __ aces, so there are __ choices for the down card. There are __ hearts, so there are __ choices for the up card. By the product principle, there are 52 ways in all.

Except:

Remember to ask: Do cases need to be counted in different ways?

Overcounting

Example. How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

Examples: 1114, 1229, 5555 Non-examples: 1231, 9898.

Overcounting

Example. How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

Examples: 1114, 1220, 5555

Examples: 1114, 1229, 5555 Non-examples: 1231, 9898.

Strategy:

- 1. Choose where the adjacent equal elements are. (___ ways)
- 2. Choose which number they are. (___ ways)
- 3. Choose the numbers for the remaining elements. (____ ways)

Overcounting

Example. How many 4-lists taken	from [9] have at least one pair
of adjacent elements equal?	
Examples: 1114, 1229, 5555	Non-examples: 1231, 9898.
Strategy:	
1. Choose where the adjacent ed	qual elements are. (ways)
2. Choose which number they ar	re. (<u> </u>
3. Choose the numbers for the r	emaining elements. (ways)
By the product principle, there are	ways in all.

Overcounting

Example. How many 4-lists taken from [9] have at least one pair
of adjacent elements equal?
Examples: 1114, 1229, 5555 Non-examples: 1231, 9898.
Strategy:
1. Choose where the adjacent equal elements are. (ways)
2. Choose which number they are. (ways)
3. Choose the numbers for the remaining elements. (ways)
By the product principle, there are ways in all.
Except:

Overcounting

Example. How many 4-lists taken from [9] have at least of adjacent elements equal?	one pair
Examples: 1114, 1229, 5555 Non-examples: 1231, 9	9898.
Strategy:	
1. Choose where the adjacent equal elements are.	(ways)
2. Choose which number they are.	(ways)
3. Choose the numbers for the remaining elements.	(ways)
By the product principle, there are ways in all.	
Except:	

Remember to ask: Does the same object appear in multiple ways?

Counting the complement

Q1: How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

—Compare this to—

Q2: How many 4-lists taken from [9] have **no** pairs of adjacent elements equal?

What can we say about:

Q1: Q2:

Q1: How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

—Compare this to—

Together:

Q2: How many 4-lists taken from [9] have **no** pairs of adjacent elements equal?

What can we say about:

Q1: Q2:

42.

Q3:

Q1: How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

—Compare this to—

Q2: How many 4-lists taken from [9] have **no** pairs of adjacent elements equal?

What can we say about:

Q1: Q2: Together:

Q3:

Strategy: It is sometimes easier to **count the complement**.

Answer to Q3:

Q1: How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

—Compare this to—

Q2: How many 4-lists taken from [9] have **no** pairs of adjacent elements equal?

What can we say about:

Q1: Q2: Together:

Q3:

Strategy: It is sometimes easier to **count the complement**.

Answer to Q3: Answer to Q2:

Q1: How many 4-lists taken from [9] have at least one pair of adjacent elements equal?

—Compare this to—

Q2: How many 4-lists taken from [9] have **no** pairs of adjacent elements equal?

What can we say about:

Q1: Q2: Together:

Q3:

Strategy: It is sometimes easier to **count the complement**.

Answer to Q3:

Answer to Q2:

Answer to Q1:

Poker hands

Example. When playing five-card poker, what is the probability that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:

Poker hands

Example. When playing five-card poker, what is the probability that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:

- Count the total number of hands.
- Count the number of possible full houses.

▶ Divide to find the probability.

Poker hands

Example. When playing five-card poker, what is the probability that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:

- Count the total number of hands.
- Count the number of possible full houses.
 - ► Choose the denomination of the three-of-a-kind.
 - ► Choose which three suits they are in.

▶ Divide to find the probability.

Poker hands

Example. When playing five-card poker, what is the probability that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:

- Count the total number of hands.
- Count the number of possible full houses.
 - ▶ Choose the denomination of the three-of-a-kind.
 - ► Choose which three suits they are in.
 - Choose the denomination of the pair.
 - ► Choose which two suits they are in.
 - ► Apply the multiplication principle.
- ▶ Divide to find the probability.

Poker hands

Example. When playing five-card poker, what is the probability that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:

- ► Count the total number of hands.
- ► Count the number of possible full houses. # of ways
 - ► Choose the denomination of the three-of-a-kind.
 - Choose which three suits they are in.
 - Choose the denomination of the pair.
 - ► Choose which two suits they are in.
 - Apply the multiplication principle. Total:
- ▶ Divide to find the probability.

Poker hands

Example. When playing five-card poker, what is the probability that you are dealt a full house?

[Three cards of one type and two cards of another type.] 5 5 5 K K

Game plan:

- ► Count the total number of hands.
- ► Count the number of possible full houses. # of ways
 - ► Choose the denomination of the three-of-a-kind.
 - Choose which three suits they are in.
 - Choose the denomination of the pair.
 - Choose which two suits they are in.
 - Apply the multiplication principle. Total:
- Divide to find the probability.

 $\frac{3744}{2598960} \approx 0.14\%$

Pascal's identity gives us the recurrence $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k.

$n \setminus k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1		1					
1 2 3	1			1				
4	1				1			
4 5 6	1					1		
6	1						1	
7	1							1

$n \setminus k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
2 3	1			1				
4	1				1			
5 6	1					1		
6	1						1	
7	1							1

$n \setminus k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
1 2 3 4 5 6	1	3	3	1				
4	1				1			
5	1					1		
6	1						1	
7	1							1

$n \setminus k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1					1		
6	1						1	
7	1							1

$n \setminus k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1	5	10	10	5	1		
6	1	6	15	20	15	6	1	
7	1							1

Pascal's identity gives us the recurrence $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k. $\binom{n}{0} = 1$ and $\binom{n}{n} = 1$ for all n.

$n \setminus k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	3	1				
4	1	4	6	4	1			
5	1	5	10	10	5	1		
6	1	6	15	20	15	6	1	
7	1							1

Seg's in Pascal's triangle:

1, 2, 3, 4, 5, ...
$$\binom{n}{1}$$

($a_n = n$)
1, 3, 6, 10, 15, ... $\binom{n}{2}$
triangular
1, 4, 10, 20, 35, ... $\binom{n}{3}$
tetrahedral
1, 2, 6, 20, 70, ... $\binom{2n}{n}$
centr. binom.

Pascal's identity gives us the recurrence $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$. With initial conditions we can calculate $\binom{n}{k}$ for all n and k. $\binom{n}{0} = 1$ and $\binom{n}{n} = 1$ for all n.

$n \setminus k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2	1					
3	1	3	1 3 6	1				
4	1	4 5	6	4	1			
5	1	5	10	10	5	1		
6	1	6	15	20	15	6	1	
7	1							1

Seg's in Pascal's triangle:

1,2,3,4,5,...
$$\binom{n}{1}$$

($a_n = n$) A000027
1,3,6,10,15,... $\binom{n}{2}$
triangular A000217
1,4,10,20,35,... $\binom{n}{3}$
tetrahedral A000292
1,2,6,20,70,... $\binom{2n}{n}$
centr. binom. A000984

Online Encyclopedia of Integer Sequences:

http://oeis.org/

Theorem 2.2.2. Let n be a positive integer. For all x and y,

$$(x+y)^n = x^n + \binom{n}{1}x^{n-1}y + \cdots + \binom{n}{n-1}xy^{n-1} + y^n.$$

Theorem 2.2.2. Let n be a positive integer. For all x and y,

$$(x+y)^n = x^n + \binom{n}{1}x^{n-1}y + \dots + \binom{n}{n-1}xy^{n-1} + y^n.$$

Rewrite in summation notation! Determine the generic term $\binom{n}{k}x$ y] and the bounds on k

$$(x+y)^n=\sum$$

Theorem 2.2.2. Let n be a positive integer. For all x and y,

$$(x+y)^n = x^n + \binom{n}{1}x^{n-1}y + \cdots + \binom{n}{n-1}xy^{n-1} + y^n.$$

Rewrite in summation notation! Determine the generic term $\binom{n}{k}x$ y] and the bounds on k

$$(x+y)^n=\sum$$

▶ The entries of Pascal's triangle are the coefficients of terms in the expansion of $(x + y)^n$.

Theorem 2.2.2. Let n be a positive integer. For all x and y,

$$(x+y)^n = x^n + \binom{n}{1}x^{n-1}y + \dots + \binom{n}{n-1}xy^{n-1} + y^n.$$

Rewrite in summation notation! Determine the generic term $\binom{n}{k}x$ y] and the bounds on k

$$(x+y)^n=\sum$$

▶ The entries of Pascal's triangle are the coefficients of terms in the expansion of $(x + y)^n$.

Proof. In the expansion of $(x+y)(x+y)\cdots(x+y)$, in how many ways can a term have the form $x^{n-k}y^k$?

Theorem 2.2.2. Let n be a positive integer. For all x and y,

$$(x+y)^n = x^n + \binom{n}{1}x^{n-1}y + \dots + \binom{n}{n-1}xy^{n-1} + y^n.$$

Rewrite in summation notation! Determine the generic term $\binom{n}{k}x$ y and the bounds on k

$$(x+y)^n=\sum$$

▶ The entries of Pascal's triangle are the coefficients of terms in the expansion of $(x + y)^n$.

Proof. In the expansion of $(x+y)(x+y)\cdots(x+y)$, in how many ways can a term have the form $x^{n-k}y^k$?

From the *n* factors (x + y), you must choose a "y" exactly k times. Therefore, $\binom{n}{k}$ ways. We recover the desired equation.