Introduction to Bijections

Key tool: A useful method of proving that two sets A and B are of the same size is by way of a *bijection*.

A **bijection** is a function or rule that pairs up elements of A and B.

Example. The set A of subsets of $\{s_1, s_2, s_3\}$ are in bijection with the set B of binary words of length 3.

Rule: Given $a \in A$, (a is a subset), define $b \in B$ (b is a word): If $s_i \in a$, then letter i in b is 1. If $s_i \notin a$, then letter i in b is 0.

Difficulties:

► Finding the function or rule (requires rearranging, ordering)

Proving the function or rule (show it IS a bijection).

What is a Function?

Reminder: A function f from A to B (write $f : A \rightarrow B$) is a rule where for each element $a \in A$, f(a) is defined as an element $b \in B$ (write $f : a \mapsto b$).

- A is called the **domain**. (We write A = dom(f))
- ▶ *B* is called the **codomain**. (We write B = cod(f))

► The range of f is the set of values that f takes on:
rng(f) = { b ∈ B : f(a) = b for at least one a ∈ A }

Example. Let A be the set of 3-subsets of [n] and let B be the set of 3-lists of [n]. Then define $f : A \to B$ to be the function that takes a 3-subset $\{i_1, i_2, i_3\} \in A$ (with $i_1 \leq i_2 \leq i_3$) to the word $i_1 i_2 i_3 \in B$. *Question:* Is rng(f) = B?

What is a Bijection?

Definition: A function $f : A \to B$ is one-to-one (an injection) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$. Equivalently,

For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$. "When the inputs are different, the outputs are different." (picture) *Definition:* A function $f : A \rightarrow B$ is **onto** (a **surjection**) when For each $b \in B$, there exists some $a \in A$ such that f(a) = b. "Every output gets hit."

Definition: A function $f : A \rightarrow B$ is a **bijection** if it is both one-to-one and onto.

The function from the previous page is _____

What is an example of a function that is onto and not one-to-one?

Proving a Bijection

Example. Use a bijection to prove that $\binom{n}{k} = \binom{n}{n-k}$ for $0 \le k \le n$.

Proof. Let A be the set of k-subsets of [n] and let B be the set of (n - k)-subsets of [n].

A bijection between A and B will prove $\binom{n}{k} = |A| = |B| = \binom{n}{n-k}$.

Step 1: Find a candidate bijection.

Strategy. Try out a small (enough) example. Try n = 5 and k = 2.

$$\left\{ \begin{array}{c} \{1,2\}, \ \{1,3\} \\ \{1,4\}, \ \{1,5\} \\ \{2,3\}, \ \{2,4\} \\ \{2,5\}, \ \{3,4\} \\ \{3,5\}, \ \{4,5\} \end{array} \right\} \leftrightarrow \left\{ \begin{array}{c} \{1,2,3\}, \ \{1,2,4\} \\ \{1,2,5\}, \ \{1,3,4\} \\ \{1,3,5\}, \ \{1,4,5\} \\ \{2,3,4\}, \ \{2,3,5\} \\ \{2,4,5\}, \ \{3,4,5\} \end{array} \right\}$$

Guess: Let S be a k-subset of [n]. Perhaps f(S) =

Proving a Bijection

Step 2: Prove *f* **is well defined.**

The function f is well defined. If S is any k-subset of [n], then S^c is a subset of [n] with n - k members. Therefore $f : A \rightarrow B$.

Step 3: Prove *f* **is a bijection.**

Strategy. Prove that *f* is both one-to-one and onto.

f is 1-to-1: Suppose that S_1 and S_2 are two *k*-subsets of [n] such that $f(S_1) = f(S_2)$. That is, $S_1^c = S_2^c$. This means that for all $i \in [n]$, then $i \notin S_1$ if and only if $i \notin S_2$. Therefore $S_1 = S_2$ and *f* is 1-to-1.

f is onto: Suppose that $T \in B$ is an (n - k)-subset of [n]. We must find a set $S \in A$ satisfying f(S) = T. Choose S =Then $S \in A$ (why?), and $f(S) = S^c = T$, so f is onto.

We conclude that f is a bijection and therefore, $\binom{n}{k} = \binom{n}{n-k}$.

Alternative methods to prove bijections

Prove that a rule f is a bijection by finding f's **inverse**:

- ▶ Determine a rule for a candidate inverse function g.
- ▶ Show that *f* is a well defined function from *A* to *B*.
- Show that g is a well defined function from B to A.

▶ Show for all
$$a \in A$$
, $g(f(a)) = a$
and for all $b \in B$, $f(g(b)) = b$

When g is the inverse of f, both f and g are bijections.

Using the inverse function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

even: {
$$\emptyset$$
, { s_1 , s_2 }, { s_1 , s_3 }, { s_2 , s_3 } }
odd: {{ s_1 }, { s_2 }, { s_3 }, { s_1 , s_2 , s_3 }

Proof. Let A be the set of even-sized subsets of [n] and let B be the set of odd-sized subsets of [n]. Consider the function

$$f(S) = egin{cases} S - \{1\} & ext{if } 1 \in S \ S \cup \{1\} & ext{if } 1
otin S \end{bmatrix}.$$

- f is a well defined function from A to B (why?).
- f is also a well defined function from B to A (why?).
- ▶ f^2 is the identity function.

Therefore, f is a bijection, proving the statement, as desired.

Eyebrow-Raising Consequence:
$$\sum_{k=0}^{n} (-1)^k {n \choose k} = 0.$$