Introduction to Bijections

Key tool: A useful method of proving that two sets A and B are of the same size is by way of a bijection.
A bijection is a function or rule that pairs up elements of A and B.

Introduction to Bijections

Key tool: A useful method of proving that two sets A and B are of the same size is by way of a bijection.
A bijection is a function or rule that pairs up elements of A and B.
Example. The set A of subsets of $\left\{s_{1}, s_{2}, s_{3}\right\}$ are in bijection with the set B of binary words of length 3 .

Set A: $\left\{\emptyset,\left\{s_{1}\right\},\left\{s_{2}\right\},\left\{s_{1}, s_{2}\right\},\left\{s_{3}\right\},\left\{s_{1}, s_{3}\right\},\left\{s_{2}, s_{3}\right\},\left\{s_{1}, s_{2}, s_{3}\right\}\right\}$
Set B: $\{000,100,010,110,001,101,011,111\}$

Introduction to Bijections

Key tool: A useful method of proving that two sets A and B are of the same size is by way of a bijection.
A bijection is a function or rule that pairs up elements of A and B.
Example. The set A of subsets of $\left\{s_{1}, s_{2}, s_{3}\right\}$ are in bijection with the set B of binary words of length 3 .

Set $A:\left\{\emptyset,\left\{s_{1}\right\},\left\{s_{2}\right\},\left\{s_{1}, s_{2}\right\},\left\{s_{3}\right\},\left\{s_{1}, s_{3}\right\},\left\{s_{2}, s_{3}\right\},\left\{s_{1}, s_{2}, s_{3}\right\}\right\}$
Bijection:
Set B: $\{000,100,010,110,001,101,1011,111\}$

Introduction to Bijections

Key tool: A useful method of proving that two sets A and B are of the same size is by way of a bijection.
A bijection is a function or rule that pairs up elements of A and B.
Example. The set A of subsets of $\left\{s_{1}, s_{2}, s_{3}\right\}$ are in bijection with the set B of binary words of length 3 .

Set A: $\left\{\emptyset,\left\{s_{1}\right\},\left\{s_{2}\right\},\left\{s_{1}, s_{2}\right\},\left\{s_{3}\right\},\left\{s_{1}, s_{3}\right\},\left\{s_{2}, s_{3}\right\},\left\{s_{1}, s_{2}, s_{3}\right\}\right\}$

Set B: $\{000,100,010,110,001,101,1011,111\}$
Rule: Given $a \in A$, (a is a subset), define $b \in B$ (b is a word): If $s_{i} \in a$, then letter i in b is 1 . If $s_{i} \notin a$, then letter i in b is 0 .

Introduction to Bijections

Key tool: A useful method of proving that two sets A and B are of the same size is by way of a bijection.
A bijection is a function or rule that pairs up elements of A and B.
Example. The set A of subsets of $\left\{s_{1}, s_{2}, s_{3}\right\}$ are in bijection with the set B of binary words of length 3 .

Set A: $\left\{\emptyset,\left\{s_{1}\right\},\left\{s_{2}\right\},\left\{s_{1}, s_{2}\right\},\left\{s_{3}\right\},\left\{s_{1}, s_{3}\right\},\left\{s_{2}, s_{3}\right\},\left\{s_{1}, s_{2}, s_{3}\right\}\right\}$

Set B: $\{000,100,010,110,001,101,1011,111\}$
Rule: Given $a \in A$, (a is a subset), define $b \in B$ (b is a word): If $s_{i} \in a$, then letter i in b is 1 . If $s_{i} \notin a$, then letter i in b is 0 .

Difficulties:

- Finding the function or rule (requires rearranging, ordering)
- Proving the function or rule (show it IS a bijection).

What is a Function?

Reminder: A function f from A to B (write $f: A \rightarrow B$) is a rule where for each element $a \in A, f(a)$ is defined as an element $b \in B$ (write $f: a \mapsto b$).

What is a Function?

Reminder: A function f from A to B (write $f: A \rightarrow B$) is a rule where for each element $a \in A, f(a)$ is defined as an element $b \in B$ (write $f: a \mapsto b$).

- A is called the domain. (We write $A=\operatorname{dom}(f)$)
- B is called the codomain. (We write $B=\operatorname{cod}(f)$)

What is a Function?

Reminder: A function f from A to B (write $f: A \rightarrow B$) is a rule where for each element $a \in A, f(a)$ is defined as an element $b \in B$ (write $f: a \mapsto b$).

- A is called the domain. (We write $A=\operatorname{dom}(f)$)
- B is called the codomain. (We write $B=\operatorname{cod}(f)$)
- The range of f is the set of values that f takes on:

$$
\operatorname{rng}(f)=\{b \in B: f(a)=b \text { for at least one } a \in A\}
$$

What is a Function?

Reminder: A function f from A to B (write $f: A \rightarrow B$) is a rule where for each element $a \in A, f(a)$ is defined as an element $b \in B$ (write $f: a \mapsto b$).

- A is called the domain. (We write $A=\operatorname{dom}(f)$)
- B is called the codomain. (We write $B=\operatorname{cod}(f)$)
- The range of f is the set of values that f takes on:

$$
\operatorname{rng}(f)=\{b \in B: f(a)=b \text { for at least one } a \in A\}
$$

Example. Let A be the set of 3 -subsets of $[n]$ and let B be the set of 3 -lists of $[n]$. Then define $f: A \rightarrow B$ to be the function that takes a 3 -subset $\left\{i_{1}, i_{2}, i_{3}\right\} \in A$ (with $i_{1} \leq i_{2} \leq i_{3}$) to the word $i_{1} i_{2} i_{3} \in B$.

Question: Is $\operatorname{rng}(f)=B$?

What is a Bijection?

Definition: A function $f: A \rightarrow B$ is one-to-one (an injection) when For each $a_{1}, a_{2} \in A$, if $f\left(a_{1}\right)=f\left(a_{2}\right)$, then $a_{1}=a_{2}$.

What is a Bijection?

Definition: A function $f: A \rightarrow B$ is one-to-one (an injection) when
For each $a_{1}, a_{2} \in A$, if $f\left(a_{1}\right)=f\left(a_{2}\right)$, then $a_{1}=a_{2}$.
Equivalently,
For each $a_{1}, a_{2} \in A$, if $a_{1} \neq a_{2}$, then $f\left(a_{1}\right) \neq f\left(a_{2}\right)$.

What is a Bijection?

Definition: A function $f: A \rightarrow B$ is one-to-one (an injection) when
For each $a_{1}, a_{2} \in A$, if $f\left(a_{1}\right)=f\left(a_{2}\right)$, then $a_{1}=a_{2}$.
Equivalently,
For each $a_{1}, a_{2} \in A$, if $a_{1} \neq a_{2}$, then $f\left(a_{1}\right) \neq f\left(a_{2}\right)$.
"When the inputs are different, the outputs are different." (picture)

What is a Bijection?

Definition: A function $f: A \rightarrow B$ is one-to-one (an injection) when
For each $a_{1}, a_{2} \in A$, if $f\left(a_{1}\right)=f\left(a_{2}\right)$, then $a_{1}=a_{2}$.
Equivalently,
For each $a_{1}, a_{2} \in A$, if $a_{1} \neq a_{2}$, then $f\left(a_{1}\right) \neq f\left(a_{2}\right)$.
"When the inputs are different, the outputs are different." (picture)
Definition: A function $f: A \rightarrow B$ is onto (a surjection) when
For each $b \in B$, there exists some $a \in A$ such that $f(a)=b$.
"Every output gets hit."

What is a Bijection?

Definition: A function $f: A \rightarrow B$ is one-to-one (an injection) when
For each $a_{1}, a_{2} \in A$, if $f\left(a_{1}\right)=f\left(a_{2}\right)$, then $a_{1}=a_{2}$.
Equivalently,
For each $a_{1}, a_{2} \in A$, if $a_{1} \neq a_{2}$, then $f\left(a_{1}\right) \neq f\left(a_{2}\right)$.
"When the inputs are different, the outputs are different." (picture)
Definition: A function $f: A \rightarrow B$ is onto (a surjection) when
For each $b \in B$, there exists some $a \in A$ such that $f(a)=b$.
"Every output gets hit."
Definition: A function $f: A \rightarrow B$ is a bijection if it is both one-to-one and onto.

What is a Bijection?

Definition: A function $f: A \rightarrow B$ is one-to-one (an injection) when
For each $a_{1}, a_{2} \in A$, if $f\left(a_{1}\right)=f\left(a_{2}\right)$, then $a_{1}=a_{2}$.
Equivalently,
For each $a_{1}, a_{2} \in A$, if $a_{1} \neq a_{2}$, then $f\left(a_{1}\right) \neq f\left(a_{2}\right)$.
"When the inputs are different, the outputs are different." (picture)
Definition: A function $f: A \rightarrow B$ is onto (a surjection) when
For each $b \in B$, there exists some $a \in A$ such that $f(a)=b$.
"Every output gets hit."
Definition: A function $f: A \rightarrow B$ is a bijection if it is both one-to-one and onto.

The function from the previous page is \qquad .

What is a Bijection?

Definition: A function $f: A \rightarrow B$ is one-to-one (an injection) when
For each $a_{1}, a_{2} \in A$, if $f\left(a_{1}\right)=f\left(a_{2}\right)$, then $a_{1}=a_{2}$.
Equivalently,
For each $a_{1}, a_{2} \in A$, if $a_{1} \neq a_{2}$, then $f\left(a_{1}\right) \neq f\left(a_{2}\right)$.
"When the inputs are different, the outputs are different." (picture)
Definition: A function $f: A \rightarrow B$ is onto (a surjection) when For each $b \in B$, there exists some $a \in A$ such that $f(a)=b$.
"Every output gets hit."
Definition: A function $f: A \rightarrow B$ is a bijection if it is both one-to-one and onto.

The function from the previous page is \qquad .
What is an example of a function that is onto and not one-to-one?

Proving a Bijection

Example. Use a bijection to prove that $\binom{n}{k}=\binom{n}{n-k}$ for $0 \leq k \leq n$.

Proving a Bijection

Example. Use a bijection to prove that $\binom{n}{k}=\binom{n}{n-k}$ for $0 \leq k \leq n$.
Proof. Let A be the set of k-subsets of [n] and let B be the set of $(n-k)$-subsets of $[n]$.

A bijection between A and B will prove $\binom{n}{k}=|A|=|B|=\binom{n}{n-k}$.

Proving a Bijection

Example. Use a bijection to prove that $\binom{n}{k}=\binom{n}{n-k}$ for $0 \leq k \leq n$.
Proof. Let A be the set of k-subsets of [n] and let B be the set of $(n-k)$-subsets of $[n]$.

A bijection between A and B will prove $\binom{n}{k}=|A|=|B|=\binom{n}{n-k}$.
Step 1: Find a candidate bijection.
Strategy. Try out a small (enough) example. Try $n=5$ and $k=2$.

$$
\left\{\begin{array}{l}
\{1,2\},\{1,3\} \\
\{1,4\},\{1,5\} \\
\{2,3\},\{2,4\} \\
\{2,5\},\{3,4\} \\
\{3,5\},\{4,5\}
\end{array}\right\} \leftrightarrow\left\{\begin{array}{l}
\{1,2,3\},\{1,2,4\} \\
\{1,2,5\},\{1,3,4\} \\
\{1,3,5\},\{1,4,5\} \\
\{2,3,4\},\{2,3,5\} \\
\{2,4,5\},\{3,4,5\}
\end{array}\right\}
$$

Proving a Bijection

Example. Use a bijection to prove that $\binom{n}{k}=\binom{n}{n-k}$ for $0 \leq k \leq n$.
Proof. Let A be the set of k-subsets of [n] and let B be the set of $(n-k)$-subsets of $[n]$.

A bijection between A and B will prove $\binom{n}{k}=|A|=|B|=\binom{n}{n-k}$.
Step 1: Find a candidate bijection.
Strategy. Try out a small (enough) example. Try $n=5$ and $k=2$.

$$
\left\{\begin{array}{l}
\{1,2\},\{1,3\} \\
\{1,4\},\{1,5\} \\
\{2,3\},\{2,4\} \\
\{2,5\},\{3,4\} \\
\{3,5\},\{4,5\}
\end{array}\right\} \leftrightarrow\left\{\begin{array}{l}
\{1,2,3\},\{1,2,4\} \\
\{1,2,5\},\{1,3,4\} \\
\{1,3,5\},\{1,4,5\} \\
\{2,3,4\},\{2,3,5\} \\
\{2,4,5\},\{3,4,5\}
\end{array}\right\}
$$

Guess: Let S be a k-subset of $[n]$. Perhaps $f(S)=$ \qquad .

Proving a Bijection

Step 2: Prove f is well defined.

The function f is well defined. If S is any k-subset of $[n]$, then S^{c} is a subset of $[n]$ with $n-k$ members. Therefore $f: A \rightarrow B$.

Proving a Bijection

Step 2: Prove f is well defined.

The function f is well defined. If S is any k-subset of $[n]$, then S^{c} is a subset of $[n]$ with $n-k$ members. Therefore $f: A \rightarrow B$.

Step 3: Prove f is a bijection.
Strategy. Prove that f is both one-to-one and onto.

Proving a Bijection

Step 2: Prove f is well defined.

The function f is well defined. If S is any k-subset of $[n]$, then S^{c} is a subset of $[n]$ with $n-k$ members. Therefore $f: A \rightarrow B$.

Step 3: Prove f is a bijection.

Strategy. Prove that f is both one-to-one and onto.
f is 1-to-1: Suppose that S_{1} and S_{2} are two k-subsets of [n] such that $f\left(S_{1}\right)=f\left(S_{2}\right)$. That is, $S_{1}^{c}=S_{2}^{c}$. This means that for all $i \in[n]$, then $i \notin S_{1}$ if and only if $i \notin S_{2}$. Therefore $S_{1}=S_{2}$ and f is 1-to-1.

Proving a Bijection

Step 2: Prove f is well defined.

The function f is well defined. If S is any k-subset of $[n]$, then S^{c} is a subset of $[n]$ with $n-k$ members. Therefore $f: A \rightarrow B$.

Step 3: Prove f is a bijection.

Strategy. Prove that f is both one-to-one and onto.
f is 1-to-1: Suppose that S_{1} and S_{2} are two k-subsets of [n] such that $f\left(S_{1}\right)=f\left(S_{2}\right)$. That is, $S_{1}^{c}=S_{2}^{c}$. This means that for all $i \in[n]$, then $i \notin S_{1}$ if and only if $i \notin S_{2}$. Therefore $S_{1}=S_{2}$ and f is 1-to-1.
f is onto: Suppose that $T \in B$ is an $(n-k)$-subset of [n]. We must find a set $S \in A$ satisfying $f(S)=T$. Choose $S=$ \qquad Then $S \in A$ (why?), and $f(S)=S^{c}=T$, so f is onto.
We conclude that f is a bijection and therefore, $\binom{n}{k}=\binom{n}{n-k}$.

Alternative methods to prove bijections

Prove that a rule f is a bijection by finding f 's inverse:

- Determine a rule for a candidate inverse function g.

Alternative methods to prove bijections

Prove that a rule f is a bijection by finding f 's inverse:

- Determine a rule for a candidate inverse function g.
- Show that f is a well defined function from A to B.
- Show that g is a well defined function from B to A.

Alternative methods to prove bijections

Prove that a rule f is a bijection by finding f 's inverse:

- Determine a rule for a candidate inverse function g.
- Show that f is a well defined function from A to B.
- Show that g is a well defined function from B to A.
- Show for all $a \in A, g(f(a))=a$ and for all $b \in B, f(g(b))=b$

Alternative methods to prove bijections

Prove that a rule f is a bijection by finding f 's inverse:

- Determine a rule for a candidate inverse function g.
- Show that f is a well defined function from A to B.
- Show that g is a well defined function from B to A.
- Show for all $a \in A, g(f(a))=a$ and for all $b \in B, f(g(b))=b$

When g is the inverse of f, both f and g are bijections.

Using the inverse function

Example. There exists as many even-sized subsets of $[n]$ as odd-sized subsets of [n].

Using the inverse function

Example. There exists as many even-sized subsets of $[n]$ as odd-sized subsets of [n].
even: $\left.\left\{\begin{array}{c}\emptyset, \\ \text { odd: }\left\{s_{1}, s_{2}\right\},\left\{s_{1}, s_{3}\right\}, \quad\left\{s_{2}, s_{3}\right\} \\ \left\{s_{1}\right\},\end{array}\right\},\left\{s_{2}\right\}, \quad\left\{s_{3}\right\}, \quad\left\{s_{1}, s_{2}, s_{3}\right\}\right\}$

Using the inverse function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].
even: $\left\{\emptyset, \quad\left\{s_{1}, s_{2}\right\},\left\{s_{1}, s_{3}\right\}, \quad\left\{s_{2}, s_{3}\right\}\right.$
odd: $\left\{\left\{s_{1}\right\}, \quad\left\{s_{2}\right\}, \quad\left\{s_{3}\right\}, \quad\left\{s_{1}, s_{2}, s_{3}\right\}\right\}$
Proof. Let A be the set of even-sized subsets of $[n]$ and let B be the set of odd-sized subsets of $[n]$. Consider the function

$$
f(S)=\left\{\begin{array}{ll}
S-\{1\} & \text { if } 1 \in S \\
S \cup\{1\} & \text { if } 1 \notin S
\end{array}\right\}
$$

- f is a well defined function from A to B (why?).

Using the inverse function

Example. There exists as many even-sized subsets of $[n]$ as odd-sized subsets of [n].

Proof. Let A be the set of even-sized subsets of $[n]$ and let B be the set of odd-sized subsets of $[n]$. Consider the function

$$
f(S)=\left\{\begin{array}{ll}
S-\{1\} & \text { if } 1 \in S \\
S \cup\{1\} & \text { if } 1 \notin S
\end{array}\right\}
$$

- f is a well defined function from A to B (why?).
- f is also a well defined function from B to A (why?).

Using the inverse function

Example. There exists as many even-sized subsets of $[n]$ as odd-sized subsets of [n].

Proof. Let A be the set of even-sized subsets of $[n]$ and let B be the set of odd-sized subsets of $[n]$. Consider the function

$$
f(S)=\left\{\begin{array}{ll}
S-\{1\} & \text { if } 1 \in S \\
S \cup\{1\} & \text { if } 1 \notin S
\end{array}\right\}
$$

- f is a well defined function from A to B (why?).
- f is also a well defined function from B to A (why?).
- f^{2} is the identity function.

Therefore, f is a bijection, proving the statement, as desired.

Using the inverse function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].
even: $\left\{\emptyset, \quad\left\{s_{1}, s_{2}\right\},\left\{s_{1}, s_{3}\right\}, \quad\left\{s_{2}, s_{3}\right\}\right\}$
odd: $\left\{\left\{s_{1}\right\}, \quad\left\{s_{2}\right\}, \quad\left\{s_{3}\right\}, \quad\left\{s_{1}, s_{2}, s_{3}\right\}\right\}$
Proof. Let A be the set of even-sized subsets of $[n]$ and let B be the set of odd-sized subsets of $[n]$. Consider the function

$$
f(S)=\left\{\begin{array}{ll}
S-\{1\} & \text { if } 1 \in S \\
S \cup\{1\} & \text { if } 1 \notin S
\end{array}\right\}
$$

- f is a well defined function from A to B (why?).
- f is also a well defined function from B to A (why?).
- f^{2} is the identity function.

Therefore, f is a bijection, proving the statement, as desired.
Eyebrow-Raising Consequence: $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0$.

