Introduction to Bijections

Key tool: A useful method of proving that two sets A and B are of the same size is by way of a *bijection*.

A **bijection** is a function or rule that pairs up elements of A and B.

Introduction to Bijections

Key tool: A useful method of proving that two sets A and B are of the same size is by way of a *bijection*.

A **bijection** is a function or rule that pairs up elements of A and B.

Example. The set A of subsets of $\{s_1, s_2, s_3\}$ are in bijection with the set B of binary words of length 3.

```
Set A: \{\emptyset, \{s_1\}, \{s_2\}, \{s_1, s_2\}, \{s_3\}, \{s_1, s_3\}, \{s_2, s_3\}, \{s_1, s_2, s_3\}\}
```

Set B: {000, 100, 010, 110, 001, 101, 011, 111

Introduction to Bijections

Key tool: A useful method of proving that two sets A and B are of the same size is by way of a *bijection*.

A **bijection** is a function or rule that pairs up elements of A and B.

Example. The set A of subsets of $\{s_1, s_2, s_3\}$ are in bijection with the set B of binary words of length 3.

Introduction to Bijections

Key tool: A useful method of proving that two sets A and B are of the same size is by way of a *bijection*.

A **bijection** is a function or rule that pairs up elements of A and B.

Example. The set A of subsets of $\{s_1, s_2, s_3\}$ are in bijection with the set B of binary words of length 3.

Rule: Given $a \in A$, (a is a subset), define $b \in B$ (b is a word): If $s_i \in a$, then letter i in b is 1. If $s_i \notin a$, then letter i in b is 0.

Introduction to Bijections

Key tool: A useful method of proving that two sets A and B are of the same size is by way of a *bijection*.

A **bijection** is a function or rule that pairs up elements of A and B.

Example. The set A of subsets of $\{s_1, s_2, s_3\}$ are in bijection with the set B of binary words of length 3.

```
Set A: \{\emptyset, \{s_1\}, \{s_2\}, \{s_1, s_2\}, \{s_3\}, \{s_1, s_3\}, \{s_2, s_3\}, \{s_1, s_2, s_3\}\}

Bijection: \updownarrow \updownarrow \updownarrow \updownarrow \updownarrow \updownarrow \updownarrow \updownarrow \updownarrow Set B: \{000, 100, 010, 110, 001, 101, 011, 111\}
```

Rule: Given $a \in A$, (a is a subset), define $b \in B$ (b is a word): If $s_i \in a$, then letter i in b is 1. If $s_i \notin a$, then letter i in b is 0.

Difficulties:

- ► Finding the function or rule (requires rearranging, ordering)
- ▶ Proving the function or rule (show it **IS** a bijection).

What is a Function?

Reminder: A **function** f from A to B (write $f:A \rightarrow B$) is a rule where for each element $a \in A$, f(a) is defined as an element $b \in B$ (write $f:a \mapsto b$).

What is a Function?

Reminder: A **function** f from A to B (write $f: A \rightarrow B$) is a rule where for each element $a \in A$, f(a) is defined as an element $b \in B$ (write $f: a \mapsto b$).

- ▶ *A* is called the **domain**. (We write A = dom(f))
- ▶ *B* is called the **codomain**. (We write B = cod(f))

What is a Function?

Reminder: A **function** f from A to B (write $f: A \rightarrow B$) is a rule where for each element $a \in A$, f(a) is defined as an element $b \in B$ (write $f: a \mapsto b$).

- ▶ *A* is called the **domain**. (We write A = dom(f))
- ▶ *B* is called the **codomain**. (We write B = cod(f))
- ▶ The **range** of *f* is the set of values that *f* takes on:

$$\operatorname{rng}(f) = \{b \in B : f(a) = b \text{ for at least one } a \in A\}$$

What is a Function?

Reminder: A **function** f from A to B (write $f: A \rightarrow B$) is a rule where for each element $a \in A$, f(a) is defined as an element $b \in B$ (write $f: a \mapsto b$).

- ▶ A is called the **domain**. (We write A = dom(f))
- ▶ *B* is called the **codomain**. (We write B = cod(f))
- ▶ The **range** of *f* is the set of values that *f* takes on:

$$\operatorname{rng}(f) = \big\{ b \in B : f(a) = b \text{ for at least one } a \in A \big\}$$

Example. Let A be the set of 3-subsets of [n] and let B be the set of 3-lists of [n]. Then define $f:A\to B$ to be the function that takes a 3-subset $\{i_1,i_2,i_3\}\in A$ (with $i_1\leq i_2\leq i_3$) to the word $i_1i_2i_3\in B$.

Question: Is rng(f) = B?

What is a Bijection?

Definition: A function $f: A \to B$ is **one-to-one** (an **injection**) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$.

What is a Bijection?

Definition: A function $f: A \to B$ is **one-to-one** (an **injection**) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$.

Equivalently,

For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.

What is a Bijection?

Definition: A function $f: A \to B$ is **one-to-one** (an **injection**) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$.

Equivalently,

For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.

"When the inputs are different, the outputs are different." (picture)

What is a Bijection?

Definition: A function $f: A \to B$ is **one-to-one** (an **injection**) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$.

Equivalently,

For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.

"When the inputs are different, the outputs are different." (picture)

Definition: A function $f:A\to B$ is **onto** (a **surjection**) when For each $b\in B$, there exists some $a\in A$ such that f(a)=b. "Every output gets hit."

What is a Bijection?

Definition: A function $f: A \to B$ is **one-to-one** (an **injection**) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$.

Equivalently,

For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.

"When the inputs are different, the outputs are different." (picture)

Definition: A function $f:A\to B$ is **onto** (a **surjection**) when For each $b\in B$, there exists some $a\in A$ such that f(a)=b. "Every output gets hit."

Definition: A function $f: A \rightarrow B$ is a **bijection** if it is both one-to-one and onto.

What is a Bijection?

Definition: A function $f: A \to B$ is **one-to-one** (an **injection**) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$.

Equivalently,

For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.

"When the inputs are different, the outputs are different." (picture)

Definition: A function $f:A\to B$ is **onto** (a **surjection**) when For each $b\in B$, there exists some $a\in A$ such that f(a)=b. "Every output gets hit."

Definition: A function $f: A \rightarrow B$ is a **bijection** if it is both one-to-one and onto.

The function from the previous page is ______

What is a Bijection?

Definition: A function $f: A \to B$ is **one-to-one** (an **injection**) when For each $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$, then $a_1 = a_2$.

Equivalently,

For each $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.

"When the inputs are different, the outputs are different." (picture)

Definition: A function $f:A\to B$ is **onto** (a **surjection**) when For each $b\in B$, there exists some $a\in A$ such that f(a)=b. "Every output gets hit."

Definition: A function $f: A \rightarrow B$ is a **bijection** if it is both one-to-one and onto.

The function from the previous page is ______

What is an example of a function that is onto and not one-to-one?

Proving a Bijection

Example. Use a bijection to prove that $\binom{n}{k} = \binom{n}{n-k}$ for $0 \le k \le n$.

Proving a Bijection

Example. Use a bijection to prove that $\binom{n}{k} = \binom{n}{n-k}$ for $0 \le k \le n$.

Proof. Let A be the set of k-subsets of [n] and let B be the set of (n-k)-subsets of [n].

A bijection between A and B will prove $\binom{n}{k} = |A| = |B| = \binom{n}{n-k}$.

Proving a Bijection

Example. Use a bijection to prove that $\binom{n}{k} = \binom{n}{n-k}$ for $0 \le k \le n$.

Proof. Let A be the set of k-subsets of [n] and let B be the set of (n - k)-subsets of [n].

A bijection between A and B will prove $\binom{n}{k} = |A| = |B| = \binom{n}{n-k}$.

Step 1: Find a candidate bijection.

Strategy. Try out a small (enough) example. Try n = 5 and k = 2.

$$\left\{
 \begin{cases}
 \{1,2\}, \{1,3\} \\
 \{1,4\}, \{1,5\} \\
 \{2,3\}, \{2,4\} \\
 \{2,5\}, \{3,4\} \\
 \{3,5\}, \{4,5\}
 \end{cases}
\right\}
\longleftrightarrow
\left\{
 \begin{cases}
 \{1,2,3\}, \{1,2,4\} \\
 \{1,2,5\}, \{1,3,4\} \\
 \{1,3,5\}, \{1,4,5\} \\
 \{2,3,4\}, \{2,3,5\} \\
 \{2,4,5\}, \{3,4,5\}
 \end{cases}
\right\}$$

Proving a Bijection

Example. Use a bijection to prove that $\binom{n}{k} = \binom{n}{n-k}$ for $0 \le k \le n$.

Proof. Let A be the set of k-subsets of [n] and let B be the set of (n - k)-subsets of [n].

A bijection between A and B will prove $\binom{n}{k} = |A| = |B| = \binom{n}{n-k}$.

Step 1: Find a candidate bijection.

Strategy. Try out a small (enough) example. Try n = 5 and k = 2.

$$\left\{
 \begin{cases}
 \{1,2\}, \{1,3\} \\
 \{1,4\}, \{1,5\} \\
 \{2,3\}, \{2,4\} \\
 \{2,5\}, \{3,4\} \\
 \{3,5\}, \{4,5\}
 \end{cases}
\right\}
\longleftrightarrow
\left\{
 \begin{cases}
 \{1,2,3\}, \{1,2,4\} \\
 \{1,2,5\}, \{1,3,4\} \\
 \{1,3,5\}, \{1,4,5\} \\
 \{2,3,4\}, \{2,3,5\} \\
 \{2,4,5\}, \{3,4,5\}
 \end{cases}
\right\}$$

Guess: Let S be a k-subset of [n]. Perhaps $f(S) = \underline{\hspace{1cm}}$.

Proving a Bijection

Step 2: Prove *f* is well defined.

The function f is well defined. If S is any k-subset of [n], then S^c is a subset of [n] with n-k members. Therefore $f:A\to B$.

Proving a Bijection

Step 2: Prove *f* is well defined.

The function f is well defined. If S is any k-subset of [n], then S^c is a subset of [n] with n-k members. Therefore $f:A\to B$.

Step 3: Prove *f* **is a bijection.**

Strategy. Prove that f is both one-to-one and onto.

Proving a Bijection

Step 2: Prove *f* is well defined.

The function f is well defined. If S is any k-subset of [n], then S^c is a subset of [n] with n-k members. Therefore $f:A\to B$.

Step 3: Prove *f* **is a bijection.**

Strategy. Prove that f is both one-to-one and onto.

f is 1-to-1: Suppose that S_1 and S_2 are two k-subsets of [n] such that $f(S_1) = f(S_2)$. That is, $S_1^c = S_2^c$. This means that for all $i \in [n]$, then $i \notin S_1$ if and only if $i \notin S_2$. Therefore $S_1 = S_2$ and f is 1-to-1.

Proving a Bijection

Step 2: Prove *f* is well defined.

The function f is well defined. If S is any k-subset of [n], then S^c is a subset of [n] with n-k members. Therefore $f:A\to B$.

Step 3: Prove f is a bijection.

Strategy. Prove that f is both one-to-one and onto.

f is 1-to-1: Suppose that S_1 and S_2 are two k-subsets of [n] such that $f(S_1) = f(S_2)$. That is, $S_1^c = S_2^c$. This means that for all $i \in [n]$, then $i \notin S_1$ if and only if $i \notin S_2$. Therefore $S_1 = S_2$ and f is 1-to-1.

f is onto: Suppose that $T \in B$ is an (n - k)-subset of [n]. We must find a set $S \in A$ satisfying f(S) = T. Choose $S = \underline{\hspace{1cm}}$. Then $S \in A$ (why?), and $f(S) = S^c = T$, so f is onto.

We conclude that f is a bijection and therefore, $\binom{n}{k} = \binom{n}{n-k}$.

Alternative methods to prove bijections

Prove that a rule f is a bijection by finding f's **inverse**:

ightharpoonup Determine a rule for a candidate inverse function g.

Alternative methods to prove bijections

Prove that a rule f is a bijection by finding f's **inverse**:

- ightharpoonup Determine a rule for a candidate inverse function g.
- \blacktriangleright Show that f is a well defined function from A to B.
- \blacktriangleright Show that g is a well defined function from B to A.

Alternative methods to prove bijections

Prove that a rule f is a bijection by finding f's **inverse**:

- \blacktriangleright Determine a rule for a candidate inverse function g.
- ▶ Show that f is a well defined function from A to B.
- ▶ Show that g is a well defined function from B to A.
- Show for all $a \in A$, g(f(a)) = a and for all $b \in B$, f(g(b)) = b

Alternative methods to prove bijections

Prove that a rule f is a bijection by finding f's **inverse**:

- \blacktriangleright Determine a rule for a candidate inverse function g.
- ▶ Show that *f* is a well defined function from *A* to *B*.
- \blacktriangleright Show that g is a well defined function from B to A.
- Show for all $a \in A$, g(f(a)) = aand for all $b \in B$, f(g(b)) = b

When g is the inverse of f, both f and g are bijections.

Using the inverse function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

Using the inverse function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

```
even: \left\{ \emptyset, \{s_1, s_2\}, \{s_1, s_3\}, \{s_2, s_3\} \right\} odd: \left\{ \{s_1\}, \{s_2\}, \{s_3\}, \{s_1, s_2, s_3\} \right\}
```

Using the inverse function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

even:
$$\{\emptyset, \{s_1, s_2\}, \{s_1, s_3\}, \{s_2, s_3\}\}\$$
 odd: $\{\{s_1\}, \{s_2\}, \{s_3\}, \{s_1, s_2, s_3\}\}\$

Proof. Let A be the set of even-sized subsets of [n] and let B be the set of odd-sized subsets of [n]. Consider the function

$$f(S) = \begin{cases} S - \{1\} & \text{if } 1 \in S \\ S \cup \{1\} & \text{if } 1 \notin S \end{cases}.$$

▶ f is a well defined function from A to B (why?).

Using the inverse function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

even:
$$\{\emptyset, \{s_1, s_2\}, \{s_1, s_3\}, \{s_2, s_3\}\}\$$
 odd: $\{\{s_1\}, \{s_2\}, \{s_3\}, \{s_1, s_2, s_3\}\}\$

Proof. Let A be the set of even-sized subsets of [n] and let B be the set of odd-sized subsets of [n]. Consider the function

$$f(S) = \begin{cases} S - \{1\} & \text{if } 1 \in S \\ S \cup \{1\} & \text{if } 1 \notin S \end{cases}.$$

- ightharpoonup f is a well defined function from A to B (why?).
- \blacktriangleright f is also a well defined function from B to A (why?).

Using the inverse function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

even:
$$\{\emptyset, \{s_1, s_2\}, \{s_1, s_3\}, \{s_2, s_3\}\}\$$
 odd: $\{\{s_1\}, \{s_2\}, \{s_3\}, \{s_1, s_2, s_3\}\}\$

Proof. Let A be the set of even-sized subsets of [n] and let B be the set of odd-sized subsets of [n]. Consider the function

$$f(S) = \begin{cases} S - \{1\} & \text{if } 1 \in S \\ S \cup \{1\} & \text{if } 1 \notin S \end{cases}.$$

- \blacktriangleright f is a well defined function from A to B (why?).
- \blacktriangleright f is also a well defined function from B to A (why?).
- $ightharpoonup f^2$ is the identity function.

Therefore, f is a bijection, proving the statement, as desired.

Using the inverse function

Example. There exists as many even-sized subsets of [n] as odd-sized subsets of [n].

even:
$$\left\{ \emptyset, \{s_1, s_2\}, \{s_1, s_3\}, \{s_2, s_3\} \right\}$$
 odd: $\left\{ \{s_1\}, \{s_2\}, \{s_3\}, \{s_1, s_2, s_3\} \right\}$

Proof. Let A be the set of even-sized subsets of [n] and let B be the set of odd-sized subsets of [n]. Consider the function

$$f(S) = \left\{ egin{aligned} S - \{1\} & ext{if } 1 \in S \ S \cup \{1\} & ext{if } 1
otin S \end{aligned}
ight\}.$$

- ▶ f is a well defined function from A to B (why?).
- \blacktriangleright f is also a well defined function from B to A (why?).
- $ightharpoonup f^2$ is the identity function.

Therefore, f is a bijection, proving the statement, as desired.

Eyebrow-Raising Consequence:
$$\sum_{k=0}^{\infty} (-1)^k \binom{n}{k} = 0.$$