Combinatorics of Core Partitions

Christopher R. H. Hanusa Queens College, CUNY

Joint work with Brant Jones, James Madison University Drew Armstrong, University of Miami Rishi Nath, York College, CUNY Tom Denton, Google Cesar Ceballos, York University, Toronto
qc.edu/~chanusa/research

Partitions

The Young diagram of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ has λ_{i} boxes in row i.
The hook length of a box $=\#$ boxes below $+\#$ boxes to right + box λ is an a-core if no boxes have hook length a.

Partition

$$
\lambda=(5,3,3,1,1,1)
$$

Partitions

The Young diagram of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ has λ_{i} boxes in row i.
The hook length of a box $=\#$ boxes below $+\#$ boxes to right + box λ is an a-core if no boxes have hook length a.

10	(6)	5	211
7	3	2	
6	2	1	
3			
2			
1			

Partition

$$
\lambda=(5,3,3,1,1,1)
$$

Partitions

The Young diagram of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ has λ_{i} boxes in row i.
The hook length of a box $=\#$ boxes below $+\#$ boxes to right + box λ is an a-core if no boxes have hook length a.

10	6	5	2	1
7	3	2		
6	2	1		
3				
2				
1				

$$
\begin{gathered}
\text { 4-Core Partition } \\
\lambda=(5,3,3,1,1,1)
\end{gathered}
$$

Partitions

The Young diagram of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ has λ_{i} boxes in row i.
The hook length of a box $=\#$ boxes below $+\#$ boxes to right + box λ is an a-core if no boxes have hook length a.

10	6	5	2	1
7	3	2		
6	2	1		
3				
2				
1				

$$
\begin{gathered}
\text { 4-Core Partition } \\
\lambda=(5,3,3,1,1,1)
\end{gathered}
$$

- There are infinitely many a-core partitions. ($a \geq 2$)

Partitions

The Young diagram of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ has λ_{i} boxes in row i.
The hook length of a box $=\#$ boxes below $+\#$ boxes to right + box λ is an a-core if no boxes have hook length a.

4-Core Partition
$\lambda=(5,3,3,1,1,1)$

Simultaneous
$(4,7)$-core partition

- There are infinitely many a-core partitions. ($a \geq 2$)

Of interest: Partitions that are both a-core and b-core. $(a, b)=1$

Partitions

The Young diagram of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ has λ_{i} boxes in row i.
The hook length of a box $=\#$ boxes below $+\#$ boxes to right + box λ is an a-core if no boxes have hook length a.

4-Core Partition

$$
\lambda=(5,3,3,1,1,1)
$$

Simultaneous
$(4,7)$-core partition

- There are infinitely many a-core partitions. ($a \geq 2$)

Of interest: Partitions that are both a-core and b-core. $(a, b)=1$

- (Anderson, 2002): \# (a,b)-core partitions equals $\frac{1}{a+b}\binom{a+b}{a}$.

Partitions and Abacus Diagrams

An abacus diagram is a function $\mathcal{A}: \mathbb{Z} \rightarrow\{\bullet\lrcorner$,$\} .$

Partitions and Abacus Diagrams

An abacus diagram is a function $\mathcal{A}: \mathbb{Z} \rightarrow\{\bullet\lrcorner$,$\} .$

Partitions and Abacus Diagrams

An abacus diagram is a function $\mathcal{A}: \mathbb{Z} \rightarrow\{\bullet\lrcorner$,$\} .$

> a-core
> partitions

Bijection!

$\longleftrightarrow \quad$| a-flush |
| :---: |
| abacus diagrams |

Partitions and Abacus Diagrams

An abacus diagram is a function $\mathcal{A}: \mathbb{Z} \rightarrow\{\bullet\lrcorner$,$\} .$

Bijection!

Rule: Read the abacus from the boundary of λ.

- vertical step \leftrightarrow bead
- horizontal step \leftrightarrow gap

Partitions and Abacus Diagrams

An abacus diagram is a function $\mathcal{A}: \mathbb{Z} \rightarrow\{\bullet\lrcorner$,$\} .$

Bijection!

Rule: Read the abacus from the boundary of λ.

- vertical step \leftrightarrow bead
- horizontal step \leftrightarrow gap

00000 -

Partitions and Abacus Diagrams

An abacus diagram is a function $\mathcal{A}: \mathbb{Z} \rightarrow\{\bullet\lrcorner$,$\} .$

Bijection!
a-core

partitions $\longleftrightarrow \quad$| a-flush |
| :---: |
| abacus diagrams |

Rule: Read the abacus from the boundary of λ.

- vertical step \leftrightarrow bead
- horizontal step \leftrightarrow gap

00000°ㅍ

Partitions and Abacus Diagrams

An abacus diagram is a function $\mathcal{A}: \mathbb{Z} \rightarrow\{\bullet\lrcorner$,$\} .$

Bijection!

Rule: Read the abacus from the boundary of λ.

- vertical step \leftrightarrow bead
- horizontal step \leftrightarrow gap

(-5) -4 -3 -2 -1 0
(1) (2) 4
5
(6) (7) 8
9 (10)
11
$12 \quad 13$

Partitions and Abacus Diagrams

An abacus diagram is a function $\mathcal{A}: \mathbb{Z} \rightarrow\{\bullet\lrcorner$,$\} .$

Bijection!

Rule: Read the abacus from the boundary of λ.

- vertical step \leftrightarrow bead
- horizontal step \leftrightarrow gap

Normalized

| -8 | -7 | -6 | -5 |
| :--- | :--- | :--- | :--- | :--- |
| -4 | -3 | -2 | -1 |
| 0 | 1 | (2) | 3 |
| 4 | 5 | (6) | 7 |
| 8 | 9 | (10) | 11 |

Balanced

| (-7) | -6 | -5 | -4 |
| :--- | :--- | :--- | :--- | :--- |
| (3) | -2 | -1 | $(0$ |
| (1) | (2) | 3 | 4 |
| (5) | (6) | 7 | 8 |
| (9) | 10 | 11 | 12 |

Core partitions in the literature

- Representation Theory: (origin)
- Nakayama conjecture, proved by Brauer \& Robinson 1947 says a-cores label a-blocks of irreducible modular representations for S_{n}.

Core partitions in the literature

- Representation Theory: (origin)
- Nakayama conjecture, proved by Brauer \& Robinson 1947 says a-cores label a-blocks of irreducible modular representations for S_{n}.
- Number Theory:
- Let $c_{a}(n)=\#$ of a-core partitions of n.
$-\ln$ 1976, Olsson proved $\sum_{n \geq 0} c_{a}(n) x^{n}=\prod_{n \geq 1} \frac{\left(1-x^{n a}\right)^{a}}{1-x^{n}}$

Core partitions in the literature

- Representation Theory: (origin)
- Nakayama conjecture, proved by Brauer \& Robinson 1947 says a-cores label a-blocks of irreducible modular representations for S_{n}.
- Number Theory:
- Let $c_{a}(n)=\#$ of a-core partitions of n.
- In 1976, Olsson proved $\sum_{n \geq 0} c_{a}(n) x^{n}=\prod_{n \geq 1} \frac{\left(1-x^{n a}\right)^{a}}{1-x^{n}}$

Numerical properties of $c_{a}(n)$?

- 1996: Granville \& Ono proved positivity: $c_{a}(n)>0(a \geq 4)$.
- 1999: Stanton conjectured monotonicity: $c_{a+1}(n) \geq c_{a}(n)$
- 2012: R. Nath \& I conjectured monotonicity: $s c_{a+2}(n) \geq s c_{a}(n)$

Core partitions in the literature

- Representation Theory: (origin)
- Nakayama conjecture, proved by Brauer \& Robinson 1947 says a-cores label a-blocks of irreducible modular representations for S_{n}.
- Number Theory:
- Let $c_{a}(n)=\#$ of a-core partitions of n.
$-\ln 1976$, Olsson proved $\sum_{n \geq 0} c_{a}(n) x^{n}=\prod_{n \geq 1} \frac{\left(1-x^{n a}\right)^{a}}{1-x^{n}}$
Numerical properties of $c_{a}(n)$?
- 1996: Granville \& Ono proved positivity: $c_{a}(n)>0(a \geq 4)$.
- 1999: Stanton conjectured monotonicity: $c_{a+1}(n) \geq c_{a}(n)$
- 2012: R. Nath \& I conjectured monotonicity: $s C_{a+2}(n) \geq s c_{a}(n)$
- Modular forms: g.f. related to Dedekind's η-fcn, a m.f. of wt. $1 / 2$.

Core partitions in the literature

- Representation Theory: (origin)
- Nakayama conjecture, proved by Brauer \& Robinson 1947 says a-cores label a-blocks of irreducible modular representations for S_{n}.
- Number Theory:
- Let $c_{a}(n)=\#$ of a-core partitions of n.
$-\ln$ 1976, Olsson proved $\sum_{n \geq 0} c_{a}(n) x^{n}=\prod_{n \geq 1} \frac{\left(1-x^{n a}\right)^{a}}{1-x^{n}}$
Numerical properties of $c_{a}(n)$?
- 1996: Granville \& Ono proved positivity: $c_{a}(n)>0(a \geq 4)$.
- 1999: Stanton conjectured monotonicity: $c_{a+1}(n) \geq c_{a}(n)$
- 2012: R. Nath \& I conjectured monotonicity: $s c_{a+2}(n) \geq s c_{a}(n)$
- Modular forms: g.f. related to Dedekind's η-fcn, a m.f. of wt. $1 / 2$.
- Group Theory: By Lascoux 2001, a-cores \longleftrightarrow coset reps in $\widetilde{S}_{a} / S_{a}$
Group actions on combinatorial objects!!!!

Affine permutations

(Finite) n-Permutations $\pi \in S_{n}$

- Write π in one-line notation. (e.g. 214536)

Affine permutations

(Finite) n-Permutations $\pi \in S_{n}$

- Write π in one-line notation. (e.g. 214536)
- Write π as a product of adjacent transpositions $\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}$
- $s_{i}:(i) \leftrightarrow(i+1) . \quad$ (e.g. $\left.s_{4}=123546\right)$
- The word for 214536 is $s_{1} s_{3} s_{4}$.

Affine permutations

(Finite) n-Permutations $\pi \in S_{n}$

- Write π in one-line notation. (e.g. 214536)
- Write π as a product of adjacent transpositions $\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}$
- $s_{i}:(i) \leftrightarrow(i+1) . \quad\left(\right.$ e.g. $\left.s_{4}=123546\right) \quad 123 \quad 123$
- The word for 214536 is $s_{1} s_{3} s_{4}$.
213132
231312

These generators interact: 321321

- Consecutive generators don't commute: $s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$
- Non-consecutive generators do commute: $s_{i} s_{j}=s_{j} s_{i}$.

Affine permutations

(Finite) n-Permutations $\pi \in S_{n}$

- Write π in one-line notation. (e.g. 214536)
- Write π as a product of adjacent transpositions $\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}$
$\rightarrow s_{i}:(i) \leftrightarrow(i+1) . \quad\left(\right.$ e.g. $\left.s_{4}=123546\right) \quad 123 \quad 123$
- The word for 214536 is $s_{1} s_{3} s_{4}$.

213132
$231 \quad 312$

These generators interact: 321321

- Consecutive generators don't commute: $s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$
\rightarrow Non-consecutive generators do commute: $s_{i} s_{j}=s_{j} s_{i}$.
Affine n-Permutations $\pi \in \widetilde{S}_{n}$
- Generators: $\left\{\mathrm{s}_{0}, \mathrm{~s}_{1}, \ldots, \mathrm{~s}_{n-1}\right\}$
- Can think of as permutations of \mathbb{Z}.
- Window notation: $[-4,-3,7,10]$

Action of generators on abacus diagrams

(James and Kerber, 1981) Given an affine permutation [w_{1}, \ldots, w_{n}],

- Create a balanced abacus on n runners where each runner has a lowest bead at w_{i}.

Action of generators on abacus diagrams

(James and Kerber, 1981) Given an affine permutation [w_{1}, \ldots, w_{n}],

- Create a balanced abacus on n runners where each runner has a lowest bead at w_{i}.

- Generators act nicely.
- s_{i} interchanges runners $i \leftrightarrow i+1$.
- s_{0} interchanges runners 1 and n (with shifts)

Action of generators on abacus diagrams

(James and Kerber, 1981) Given an affine permutation [w_{1}, \ldots, w_{n}],

- Create a balanced abacus on n runners where each runner has a lowest bead at w_{i}.

- Generators act nicely.
- s_{i} interchanges runners $i \leftrightarrow i+1$.
- s_{0} interchanges runners 1 and n (with shifts)

Action of generators on abacus diagrams

(James and Kerber, 1981) Given an affine permutation [w_{1}, \ldots, w_{n}],

- Create a balanced abacus on n runners where each runner has a lowest bead at w_{i}.

(-15) (-14) - -13 (-12)	(-15) (14) (-13) (12)	(-15) (14) -13) -12
(11) (-10) -9 -8	(11) (-10) -9 -8	(11) (-10) -9 -8
(-7) -6) -5	(-7) -6) -5 -4	(-7) -6) -5 -4
(3) -2) 0	(-3) -2) 0	-3) -2 (0)
1 (2) 3 4	$\xrightarrow{S_{1}(1) 2(3) 4}$	$\xrightarrow{s_{0}} 123$
5 (6) 7	(5) 6 (7) 8	5 6 (7) 8
9 (10) 1112	(9) $10 \begin{array}{lll}11 & 12\end{array}$	$9 \begin{array}{lll}9 & 10 & 11\end{array}$
$\begin{array}{llll}13 & 14 & 15 & 16\end{array}$	$\begin{array}{llll}13 & 14 & 15 & 16\end{array}$	$\begin{array}{llll}13 & 14 & 15 & 16\end{array}$
$\begin{array}{llll}17 & 18 & 19 & 20\end{array}$	$\begin{array}{llll}17 & 18 & 19 & 20\end{array}$	$\begin{array}{llll}17 & 18 & 19 & 20\end{array}$

- Generators act nicely.
- s_{i} interchanges runners $i \leftrightarrow i+1$.
$\left(s_{1}: 1 \leftrightarrow 2\right)$
- s_{0} interchanges runners 1 and n (with shifts)
$\left(s_{0}: 1 \stackrel{\text { shift }}{\leftrightarrow} 4\right)$

Action of generators on core partition

- Label the boxes of λ with residues.
- s_{i} acts by adding or removing boxes with residue i.

0	1	2	3	0	1
3	0	1	2	3	0
2	3	0	1	2	3
1	2	3	0	1	2
0	1	2	3	0	1
3	0	1	2	3	0

Action of generators on core partition

- Label the boxes of λ with residues.
- s_{i} acts by adding or removing boxes with residue i.

Example. $\lambda=(5,3,3,1,1)$ is a 4-core.

- has removable 0 boxes
- has addable 1, 2, 3 boxes.

0	1	2	3	0	1
3	0	1	2	3	0
2	3	0	1	2	3
1	2	3	0	1	2
0	1	2	3	0	1
3	0	1	2	3	0

$$
\begin{aligned}
& s_{1} \downarrow \\
& \begin{array}{|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 0 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 0 & 1 \\
\hline 3 & 0 & 1 & 2 & 3 & 0 \\
\hline 2 & 3 & 0 & 1 & 2 & 3 \\
\hline 1 & 2 & 3 & 0 & 1 & 2 \\
\hline 0 & 1 & 2 & 3 & 0 & 1 \\
\hline 3 & 0 & 1 & 2 & 3 & 0 \\
\hline
\end{array}
\end{aligned}
$$

Action of generators on core partition

- Label the boxes of λ with residues.
- s_{i} acts by adding or removing boxes with residue i.

Example. $\lambda=(5,3,3,1,1)$ is a 4-core.

- has removable 0 boxes
- has addable 1, 2, 3 boxes.

Idea: We can use this to figure out a word for λ.

0	1	2	3	0	1
3	0	1	2	3	0
2	3	0	1	2	3
1	2	3	0	1	2
0	1	2	3	0	1
3	0	1	2	3	0

$$
\begin{aligned}
& \begin{array}{|l|l|l|lll}
\hline 0 & 1 & 2 & 3 & 0 & 1 \\
\hline 3 & 0 & 1 & 2 & 3 & 0 \\
\hline 2 & 3 & 0 & 1 & 2 & 3 \\
\hline 1 & 2 & 3 & 0 & 1 & 2 \\
\hline 0 & 1 & 2 & 3 & 0 & 1 \\
\hline 3 & 0 & 1 & 2 & 3 & 0
\end{array} \rightarrow \begin{array}{|l|l|l|l|ll|}
\hline 0 & 1 & 2 & 3 & 0 & 1 \\
\hline 3 & 0 & 1 & 2 & 3 & 0 \\
\hline 2 & 3 & 0 & 1 & 2 & 3 \\
\hline 1 & 2 & 3 & 0 & 1 & 2 \\
0 & 1 & 2 & 3 & 0 & 1 \\
3 & 0 & 1 & 2 & 3 & 0
\end{array} \\
& S_{1} \downarrow \\
& \begin{array}{|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 0 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 0 & 1 \\
\hline 3 & 0 & 1 & 2 & 3 & 0 \\
\hline 2 & 3 & 0 & 1 & 2 & 3 \\
\hline 1 & 2 & 3 & 0 & 1 & 2 \\
\hline 0 & 1 & 2 & 3 & 0 & 1 \\
\hline 3 & 0 & 1 & 2 & 3 & 0 \\
\hline
\end{array}
\end{aligned}
$$

Finding the word corresponding to a core partition.

Example: The word in S_{4} corresponding to $\lambda=(6,4,4,2,2)$:
$s_{1} S_{0} S_{2} S_{1} S_{3} S_{2} s_{0} S_{3} S_{1} S_{0}$

0	1	2	3	0	1		0	1	2	3	0	1	
3	0	1	2	3	0		3	0	1	2	3	0	
2	3	0	1	2	3		2	3	0	1	2	3	$s 0$
1	2	3	0	1	2		1	2	3	0	1	2	
0	1	2	3	0	1		0	1	2	3	0	1	
3	0		2	3	0		3	0	1	2	3	0	

0	1	2	3	0	1		0	1		3	0			0			3	0			0	1	2	3	0			0	1			0
3	3	1	2	3	0		3	0	1	2	3	0		3	0	1	2	3	0		3	0	1	2	3				0			3
2	3	0	1	2	3	\rightarrow	2	3	0	1	2	3	$\xrightarrow{S_{3}}$	2	3	0	1	2	3	$\xrightarrow{s_{1}}$	2	3	0	1			$\xrightarrow{s_{0}}$	2	3			23
1	2	3	0	1	2		1	2	3	0	1	2		1	2	3	0	1	2		1	2	3	0	1	2		1	2			1
0	1	2	3	0	1		0	1	2	3	0	1		0	1	2	3	0	1		0	1	2	3	0			0				0
								0																								3

Anderson's bijection and the formula

Building on James's abacus diagrams, Anderson found a bijection: $\left\{\begin{array}{c}\text { simultaneous } \\ (a, b) \text {-cores }\end{array}\right\} \stackrel{\text { James }}{\longleftrightarrow}\left\{\begin{array}{c}(a, b) \text {-flush } \\ \text { balanced abaci }\end{array}\right\} \stackrel{\text { And }}{\longleftrightarrow}\left\{\begin{array}{c}(a, b) \text {-Dyck paths } \\ (0,0) \rightarrow(b, a) \\ \text { above } y=\frac{a}{b} x\end{array}\right\}$

9	6	5	3	2	1
5	2	1			
2					
1					

$(-4$	-3	-2	-1
0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

17	13	9	5	1	-3	-7
10	6	2	-2	-6	-10	-14
3	-1	-5	-9	-13	-17	-21
-4	-8	-12	-16	-20	-24	-28

Anderson's bijection and the formula

Building on James's abacus diagrams, Anderson found a bijection:
$\left\{\begin{array}{c}\text { simultaneous } \\ (a, b) \text {-cores }\end{array}\right\} \stackrel{\text { James }}{\longleftrightarrow}\left\{\begin{array}{c}(a, b) \text {-flush } \\ \text { balanced abaci }\end{array}\right\} \stackrel{\text { And. }}{\longleftrightarrow}\left\{\begin{array}{c}(a, b) \text {-Dyck paths } \\ (0,0) \rightarrow(b, a) \\ \text { above } y=\frac{a}{b} x\end{array}\right\}$

9	6	5	3	2	1
5	2	1			
2					
1					

$$
\begin{array}{cccc}
-4 & -3 & -2 & -1 \\
0 & 1 & 2 & 3 \\
4 & 5 & 6 & 7 \\
8 & 9 & 10 & 11 \\
12 & 13 & 14 & 15
\end{array}
$$

17	13	9	5	1	-3	-7
10	6	2	-2	-6	-10	-14
3	-1	-5	-9	-13	-17	-21
-4	-8	-12	-16	-20	-24	-28

Proof that the number of (a, b)-Dyck paths is $\frac{1}{a+b}\binom{a+b}{a}$: (Bizley '55)

- Path rotation gives an equivalence relation on the set of all lattice paths from $(0,0) \rightarrow(b, a)$.
- There are $\binom{a+b}{a}$ such paths and the equivalence classes have $a+b$ elements each.

Familiar numbers

t	1	2	3	4	5	6	
\# of $(t, t+1)$-cores:							

Familiar numbers

t	1	2	3	4	5	6	n
\# of $(t, t+1)$-cores:	1	2	5	14	42	132	

Familiar numbers

t	1	2	3	4	5	6	n
\# of $(t, t+1)$-cores:	1	2	5	14	42	132	C_{n}

Familiar numbers

t	1	2	3	4	5	6	n
\# of $(t, t+1)$-cores:	1	2	5	14	42	132	C_{n}

Specialize Anderson's result:

$$
\begin{gathered}
\#(t, t+1) \text {-cores } \\
\frac{1}{2 t+1}\binom{2 t+1}{t}
\end{gathered}
$$

Familiar numbers

t	1	2	3	4	5	6	n
\# of $(t, t+1)$-cores:	1	2	5	14	42	132	C_{n}

Specialize Anderson's result:

$$
\begin{gathered}
\#(t, t+1) \text {-cores } \\
\frac{1}{2 t+1}\binom{2 t+1}{t}=\frac{1}{t+1}\binom{2 t}{t}
\end{gathered}
$$

Familiar numbers

t	1	2	3	4	5	6	n
\# of $(t, t+1)$-cores:	1	2	5	14	42	132	C_{n}

Specialize Anderson's result:

$$
\begin{gathered}
\#(t, t+1) \text {-cores } \\
\frac{1}{2 t+1}\binom{2 t+1}{t}=\frac{1}{t+1}\binom{2 t}{t}
\end{gathered}
$$

Question: Is there a simple statistic on simultaneous core partitions that gives us a q-analog of the Catalan numbers?

$$
\sum_{\substack{\lambda \text { is } \\
(t, t+1) \text {-core }}} q^{\operatorname{stat}(\lambda)}=\frac{1}{[t+1]_{q}}\left[\begin{array}{c}
2 t \\
t
\end{array}\right]_{q}
$$

Familiar numbers

t	1	2	3	4	5	6	n
\# of $(t, t+1)$-cores:	1	2	5	14	42	132	C_{n}

Specialize Anderson's result:

$$
\begin{gathered}
\#(t, t+1) \text {-cores } \\
\frac{1}{2 t+1}\binom{2 t+1}{t}=\frac{1}{t+1}\binom{2 t}{t}
\end{gathered}
$$

Question: Is there a simple statistic on simultaneous core partitions that gives us a q-analog of the Catalan numbers?

$$
\sum_{\substack{\lambda \text { is a } \\
(t, t+1) \text {-core }}} q^{\operatorname{stat}(\lambda)}=\frac{1}{[t+1]_{q}}\left[\begin{array}{c}
2 t \\
t
\end{array}\right]_{q}
$$

Answer: Yes. We will create an analog of the major statistic.

The major statistic

For a permutation $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$, the major statistic $\operatorname{maj}(\pi)$ is the sum of the positions of the descents of π :

$$
\operatorname{maj}(\pi)=\sum_{i: \pi_{i-1}>\pi_{i}} i
$$

The major statistic

For a permutation $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$, the major statistic $\operatorname{maj}(\pi)$ is the sum of the positions of the descents of π :

$$
\operatorname{maj}(\pi)=\sum_{i: \pi_{i-1}>\pi_{i}} i
$$

For a $(t, t+1)$-core λ, create the sequence $b=\left(b_{0}, \ldots, b_{t-1}\right)$, where $b_{i}=\# 1^{\text {st }}$ col. boxes with hook length $\equiv i \bmod t$.

Define

$$
\operatorname{maj}(\lambda)=\sum_{i: b_{i-1} \geq b_{i}}\left(2 i-b_{i}\right)
$$

See: maj defined as a sum over descents in a sequence.

The major statistic

For a permutation $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$, the major statistic $\operatorname{maj}(\pi)$ is the sum of the positions of the descents of π :

$$
\operatorname{maj}(\pi)=\sum_{i: \pi_{i-1}>\pi_{i}} i
$$

For a $(t, t+1)$-core λ, create the sequence $b=\left(b_{0}, \ldots, b_{t-1}\right)$, where $b_{i}=\# 1^{\text {st }}$ col. boxes with hook length $\equiv i \bmod t$.
Define

$$
\operatorname{maj}(\lambda)=\sum_{i: b_{i-1} \geq b_{i}}\left(2 i-b_{i}\right)
$$

Theorem. (AHJ '13)
λ is a
$(t, t+1)$-core
See: maj defined as a sum over descents in a sequence.

The major statistic

For a permutation $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$, the major statistic $\operatorname{maj}(\pi)$ is the sum of the positions of the descents of π :

$$
\operatorname{maj}(\pi)=\sum_{i: \pi_{i-1}>\pi_{i}} i
$$

For a $(t, t+1)$-core λ, create the sequence $b=\left(b_{0}, \ldots, b_{t-1}\right)$, where $b_{i}=\# 1^{\text {st }}$ col. boxes with hook length $\equiv i \bmod t$.
Define

$$
\operatorname{maj}(\lambda)=\sum_{i: b_{i-1} \geq b_{i}}\left(2 i-b_{i}\right)
$$

Theorem. (AHJ '13)
$\sum_{\substack{\lambda \text { i s a } \\ t \\ \operatorname{maj}(\lambda)}}=\frac{1}{[t+1]_{q}}\left[\begin{array}{c}2 t \\ t\end{array}\right]_{q}$
See: maj defined as a sum over descents in a sequence.

Why? Major index on Dyck paths!

Add positions of valleys: $\quad \frac{1}{[4]_{q}}\left[\begin{array}{l}6 \\ 3\end{array}\right]_{q}=q^{0}+q^{2}+q^{3}+q^{4}+q^{2+4}$

The Zeta Map (via cores)

Follow this recipe:

1. Start with any (a, b)-Dyck path P.

17	13	9	5	1	-3	-7
10	6	2	-2	-6	-10	-14
3	-1	-5	-9	-13	-17	-21
-4	-8	-12	-16	-20	-24	-28

The Zeta Map (via cores)

Follow this recipe:

1. Start with any (a, b)-Dyck path P.
2. Find the corresponding (a, b)-core κ.

17	13	9	5	1	-3	-7
10	6	2	-2	-6	-10	-14
3	-1	-5	-9	-13	-17	-21
-4	-8	-12	-16	-20	-24	-28

9	6	5	3	2	1
5	2	1			
2					

The Zeta Map (via cores)

Follow this recipe:

1. Start with any (a, b)-Dyck path P.
2. Find the corresponding (a, b)-core κ.

17	13	9	5	1	-3	-7
10	6	2	-2	-6	-10	-14
3	-1	-5	-9	-13	-17	-21
-4	-8	-12	-16	-20	-24	-28

3. Highlight the boxes
in the a-rows and b-bdry of κ.

9	6	5	3	2	1
5	2	1			
2					
1					

The Zeta Map (via cores)

Follow this recipe:

1. Start with any (a, b)-Dyck path P.
2. Find the corresponding (a, b)-core κ.

17	13	9	5	1	-3	-7
10	6	2	-2	-6	-10	-14
3	-1	-5	-9	-13	-17	-21
-4	-8	-12	-16	-20	-24	-28

3. Highlight the boxes
in the a-rows and b-bdry of κ.

9	6	5	3	2	1
5	2	1			
2					
1					

4. Let λ be the partition with those number of boxes.

The Zeta Map (via cores)

Follow this recipe:

1. Start with any (a, b)-Dyck path P.
2. Find the corresponding (a, b)-core κ.

17	13	9	5	1	-3	-7
10	6	2	-2	-6	-10	-14
3	-1	-5	-9	-13	-17	-21
-4	-8	-12	-16	-20	-24	-28

3. Highlight the boxes
in the a-rows and b-bdry of κ.

$\left.-$| 9 | 6 | 5 | 3 | 2 |
| :--- | :--- | :--- | :--- | :--- | \right\rvert\,

4. Let λ be the partition with those number of boxes.
5. Draw the (a, b)-Dyck path Q that bounds λ.

The Zeta Map (via cores)

Follow this recipe:

1. Start with any (a, b)-Dyck path P.
2. Find the corresponding (a, b)-core κ.

17	13	9	5	1	-3	-7
10	6	2	-2	-6	-10	-14
3	-1	-5	-9	-13	-17	-21
-4	-8	-12	-16	-20	-24	-28

3. Highlight the boxes
in the a-rows and b-bdry of κ.

$-$| 9 | 6 | 5 | 3 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 2 | 1 | | | |
| 2 | | | | | |
| 1 | | | | | |

4. Let λ be the partition with those number of boxes.
5. Draw the (a, b)-Dyck path Q that bounds λ.

This defines the zeta map; $\zeta(P)=Q$.

The Zeta Map (via cores)

Follow this recipe:

1. Start with any (a, b)-Dyck path P.
2. Find the corresponding (a, b)-core κ.
3. Highlight the boxes
in the a-rows and b-bdry of κ.
(Or in b-rows and a-bdry of κ^{c})
4. Let λ be the partition with those number of boxes.
5. Draw the (a, b)-Dyck path Q that bounds λ.

17	13	9	5	1	-3	-7
10	6	2	-2	-6	-10	-14
3	-1	-5	-9	-13	-17	-21
-4	-8	-12	-16	-20	-24	-28

-9	6	5	3	2	1
5	2	1			
2					
1					

This defines the zeta map; $\zeta(P)=Q$.

The Zeta Map (via cores)

Follow this recipe:

1. Start with any (a, b)-Dyck path P.
2. Find the corresponding (a, b)-core κ.
3. Highlight the boxes
in the a-rows and b-bdry of κ.
(Or in b-rows and a-bdry of κ^{c})

17	13	9	5	1	-3	-7
10	6	2	-2	-6	-10	-14
3	-1	-5	-9	-13	-17	-21
-4	-8	-12	-16	-20	-24	-28

The Zeta Map (via the sweep map)

Follow this recipe:

1. Start with any (a, b)-Dyck path P.

The Zeta Map (via the sweep map)

Follow this recipe:

1. Start with any (a, b)-Dyck path P.

2. Assign to each lattice point its level.

The Zeta Map (via the sweep map)

Follow this recipe:

1. Start with any (a, b)-Dyck path P.
2. Assign to each lattice point its level.
3. Write down the sequence of levels $(0,0) \rightsquigarrow(b, a)$
with their associated N or E.

The Zeta Map (via the sweep map)

Follow this recipe:

1. Start with any (a, b)-Dyck path P.
2. Assign to each lattice point its level.
3. Write down the sequence of levels $(0,0) \rightsquigarrow(b, a)$ with their associated N or E.
4. Sort these from smallest to largest, permuting the N 's and E 's too.

The Zeta Map (via the sweep map)

Follow this recipe:

1. Start with any (a, b)-Dyck path P.
2. Assign to each lattice point its level.
3. Write down the sequence of levels $(0,0) \rightsquigarrow(b, a)$ with their associated N or E.
4. Sort these from smallest to largest, permuting the N 's and E 's too.
5. Read the steps as a new (a, b)-Dyck path Q.

The Zeta Map (via the sweep map)

Follow this recipe:

1. Start with any (a, b)-Dyck path P.
2. Assign to each lattice point its level.
3. Write down the sequence of levels $(0,0) \rightsquigarrow(b, a)$ with their associated N or E.
4. Sort these from smallest to largest, permuting the N 's and E 's too.
5. Read the steps as a new (a, b)-Dyck path Q.

This is also the zeta map; $\zeta(P)=Q!$

The Zeta Map (via the sweep map)

Follow this recipe:

1. Start with any (a, b)-Dyck path P.
2. Assign to each lattice point its level.
3. Write down the sequence of levels $(0,0) \rightsquigarrow(b, a) \quad(b, a) \rightsquigarrow(0,0)$
with their associated N or E.
4. Sort these from smallest to largest, permuting the N 's and E 's too.
5. Read the steps as a new (a, b)-Dyck path Q. (R after rotating 180°.)

This is also the zeta map; $\zeta(P)=Q!$ (Or the eta map $\eta(P)=R!$)

Bijection?!?!?

- What a curious rule!

Bijection?!?!?

- What a curious rule!
- Is it even well-defined?

Bijection?!?!?

- What a curious rule!
- Is it even well-defined?
- Claim: ζ is a bijection!
- Computer evidence points to yes!
- Inverse exists for ($a, a+1$)-cores (Dyck paths!)
- Inverse exists for ($a, a m+1$)-cores

Bijection?!?!?

- What a curious rule!
- Is it even well-defined?
- Claim: ζ is a bijection!
- Computer evidence points to yes!
- Inverse exists for ($a, a+1$)-cores (Dyck paths!)
- Inverse exists for ($a, a m+1$)-cores
- NEW! If we know both Q and R, we can recover P.

Bijection?!?!?

- What a curious rule!
- Is it even well-defined?
- Claim: ζ is a bijection!
- Computer evidence points to yes!
- Inverse exists for ($a, a+1$)-cores (Dyck paths!)
- Inverse exists for $(a, a m+1)$-cores
- NEW! If we know both Q and R, we can recover P.
- NEW! With a new statistic $\delta(P)$, we can iteratively recover P.

An inverse knowing $\zeta(P)$ and $\eta(P)$

1. Start with paths $\zeta(P)=Q$ above diag. and $\eta(P)=R$ rotated below diag.

$$
\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array} 11
$$

An inverse knowing $\zeta(P)$ and $\eta(P)$

1. Start with paths $\zeta(P)=Q$ above diag. and $\eta(P)=R$ rotated below diag.
2. Label steps with $1 \rightarrow a+b$.

$$
\begin{aligned}
& 1234567891011 \\
& \downarrow \\
& 5719234611810
\end{aligned}
$$

An inverse knowing $\zeta(P)$ and $\eta(P)$

1. Start with paths $\zeta(P)=Q$ above diag. and $\eta(P)=R$ rotated below diag.
2. Label steps with $1 \rightarrow a+b$.
3. Read off cycle permutation γ :
$\gamma(i)$ is the step in R opposite step i in Q.

$$
\begin{aligned}
& 1234567891011 \\
& \downarrow \\
& 5719234611810 \\
& (1,5,2,7,4,9,11,10,8,6,3)
\end{aligned}
$$

An inverse knowing $\zeta(P)$ and $\eta(P)$

1. Start with paths $\zeta(P)=Q$ above diag. and $\eta(P)=R$ rotated below diag.
2. Label steps with $1 \rightarrow a+b$.
3. Read off cycle permutation γ :
$\gamma(i)$ is the step in R opposite step i in Q.

$$
\begin{aligned}
& 123 \\
& 1 \\
& \downarrow \\
& \downarrow \\
& \downarrow
\end{aligned} \downarrow \downarrow 67 \downarrow
$$

Research Questions

\star Can we extend combinatorial interps to other reflection groups?

Research Questions

\star Can we extend combinatorial interps to other reflection groups?

- Yes! Involves self-conjugate partitions.

Research Questions

\star Can we extend combinatorial interps to other reflection groups?

- Yes! Involves self-conjugate partitions.
- Article (28 pp) published in Journal of Algebra. (2012) Sets up the theory.
- Joint with Brant Jones, JMU,

Research Questions

\star Can we extend combinatorial interps to other reflection groups?

- Yes! Involves self-conjugate partitions.
- Article (28 pp) published in Journal of Algebra. (2012) Sets up the theory.
- Article (16 pp) published in European Journal of Comb. (2014) Applies the theory.
- Joint with Brant Jones, JMU, Drew Armstrong, Miami.

Research Questions

\star What numerical properties do self-conjugate core partitions have?

Research Questions

\star What numerical properties do self-conjugate core partitions have?

- There are more (s.c. $t+2$-cores of n) than (s.c. t-cores of n).

6-cores of 22

8-cores of 22

Research Questions

\star What numerical properties do self-conjugate core partitions have?

- There are more (s.c. $t+2$-cores of n) than (s.c. t-cores of n).
- Article (17 pp) published in Journal of Number Theory. (2013)

8-cores of 22

Research Questions

\star What numerical properties do self-conjugate core partitions have?

- There are more (s.c. $t+2$-cores of n) than (s.c. t-cores of n).
- Article (17 pp) published in Journal of Number Theory. (2013)
- Joint with Rishi Nath, York College, CUNY.

Research Questions

\star Properties of simultaneous core partitions.

- Question: Is there a core statistic for a q-analog of $\frac{1}{s+t}\binom{s+t}{s}$?

Research Questions

\star Properties of simultaneous core partitions.

- Question: Is there a core statistic for a q-analog of $\frac{1}{s+t}\binom{s+t}{s}$?
- Progress: m-Catalan number C_{3} through $(3,3 m+1)$-cores.

Research Questions

\star Properties of simultaneous core partitions.

- Question: Is there a core statistic for a q-analog of $\frac{1}{s+t}\binom{s+t}{s}$?
- Progress: m-Catalan number C_{3} through $(3,3 m+1)$-cores.
- Question: How do we find the statistic $\delta(P)$ from path $\zeta(P)$?

Research Questions

\star Properties of simultaneous core partitions.

- Question: Is there a core statistic for a q-analog of $\frac{1}{s+t}\binom{s+t}{s}$?
- Progress: m-Catalan number C_{3} through $(3,3 m+1)$-cores.
- Question: How do we find the statistic $\delta(P)$ from path $\zeta(P)$?
- Progress: Known in certain cases.
- Article (34 pp) to appear in J. Combinatorial Theory Ser. A.

Research Questions

\star Properties of simultaneous core partitions.

- Question: Is there a core statistic for a q-analog of $\frac{1}{s+t}\binom{s+t}{s}$?
- Progress: m-Catalan number C_{3} through $(3,3 m+1)$-cores.
- Question: How do we find the statistic $\delta(P)$ from path $\zeta(P)$?
- Progress: Known in certain cases.
- Article (34 pp) to appear in J. Combinatorial Theory Ser. A.
- Question: Why is the zeta map a bijection?

Research Questions

\star Properties of simultaneous core partitions.

- Question: Is there a core statistic for a q-analog of $\frac{1}{s+t}\binom{s+t}{s}$?
- Progress: m-Catalan number C_{3} through $(3,3 m+1)$-cores.
- Question: How do we find the statistic $\delta(P)$ from path $\zeta(P)$?
- Progress: Known in certain cases.
- Article (34 pp) to appear in J. Combinatorial Theory Ser. A.
- Question: Why is the zeta map a bijection?
- Progress: Mystère et boule de gomme!
\star Happy to have students who would like to do research! *

Course Evaluation

Please comment on:

- Prof. Chris's effectiveness as a teacher.
- Prof. Chris's contribution to your learning.
- The course material: What you enjoyed and/or found challenging.
- Is there anything you would change about the course?
- How did the reality of the course compare to your expectations?
- Is there anything else Prof. Chris should know?

Place completed evaluations in the provided folder.

