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The Young diagram of λ = (λ1, . . . , λk) has λi boxes in row i .

The hook length of a box = # boxes below + # boxes to right + box

λ is an a-core if no boxes have hook length a.
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4-Core Partition
λ = (5, 3, 3, 1, 1, 1)

9 6 5 3 2 1

5 2 1

2

1

Simultaneous

(4, 7)-core partition

◮ There are infinitely many a-core partitions. (a ≥ 2)

Of interest: Partitions that are both a-core and b-core. (a, b) = 1

◮ (Anderson, 2002): # (a, b)-core partitions equals 1
a+b

(
a+b
a

)
.
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Partitions and Abacus Diagrams

An abacus diagram is a function A : Z→ {•, }.
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An abacus diagram is a function A : Z→ {•, }.
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◮ Nakayama conjecture, proved by Brauer & Robinson 1947 says

a-cores label a-blocks of irreducible modular representations for Sn.

◮ Number Theory:
◮ Let ca(n) = # of a-core partitions of n.

◮ In 1976, Olsson proved
∑

n≥0

ca(n)x
n =

∏

n≥1

(1− xna)a

1− xn

Numerical properties of ca(n)?

◮ 1996: Granville & Ono proved positivity: ca(n) > 0 (a ≥ 4).
◮ 1999: Stanton conjectured monotonicity: ca+1(n) ≥ ca(n)
◮ 2012: R. Nath & I conjectured monotonicity: sca+2(n) ≥ sca(n)

◮ Modular forms: g.f. related to
Dedekind’s η-fcn, a m.f. of wt. 1/2.

◮ Group Theory: By Lascoux 2001,
a-cores ←→ coset reps in S̃a/Sa
Group actions on combinatorial objects!!!!

elements of
A
�

� A

window
notation

abacus
diagram

core
partition

root lattice
point

bounded
partition

reduced
expression

@-4,-3,7,10D

H-1,2,1,-2L

s1s0s2s3s1s0s2s3s1s0
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(Finite) n-Permutations π ∈ Sn

◮ Write π in one-line notation. (e.g. 2 1 4 5 3 6)

◮ Write π as a product of adjacent transpositions {s1, s2, . . . , sn−1}

◮ si : (i)↔ (i + 1). (e.g. s4 = 1 2 3 5 46)
◮ The word for 2 1 4 5 3 6 is s1s3s4.

These generators interact:

123 123
213 132
231 312
321 321

◮ Consecutive generators don’t commute: si si+1si = si+1si si+1

◮ Non-consecutive generators do commute: sisj = sjsi .

Affine n-Permutations π ∈ S̃n

◮ Generators: {s0, s1, . . . , sn−1}

◮ Can think of as permutations of Z.

◮ Window notation: [−4,−3, 7, 10]
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Action of generators on abacus diagrams

(James and Kerber, 1981) Given an affine permutation [w1, . . . ,wn],

◮ Create a balanced abacus
on n runners where each
runner has a lowest bead
at wi .

Example: [−4,−3, 7, 10]
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◮ si interchanges runners i ↔ i + 1.
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◮ Generators act nicely.

◮ si interchanges runners i ↔ i + 1. (s1 : 1↔ 2)

◮ s0 interchanges runners 1 and n (with shifts) (s0 : 1
shift
↔ 4)
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Action of generators on core partition

◮ Label the boxes of λ with residues.

◮ si acts by adding or removing boxes
with residue i .
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Idea: We can use this to
figure out a word for λ.
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Finding the word corresponding to a core partition.

Example: The word in S4
corresponding to λ = (6, 4, 4, 2, 2):

s1s0s2s1s3s2s0s3s1s0
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Anderson’s bijection and the formula

Building on James’s abacus diagrams, Anderson found a bijection:

{
simultaneous
(a, b)-cores

}
James
←→

{
(a, b)-flush

balanced abaci

}
And.
←→





(a, b)-Dyck paths
(0, 0)→ (b, a)
above y = a

b
x





9 6 5 3 2 1

5 2 1

2

1

−4 −3 −2 −1

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15
−4 −8 −12 −16 −20 −24 −28

3 −1 −5 −9 −13 −17 −21

10 6 2 −2 −6 −10 −14

17 13 9 5 1 −3 −7
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Building on James’s abacus diagrams, Anderson found a bijection:

{
simultaneous
(a, b)-cores

}
James
←→

{
(a, b)-flush

balanced abaci

}
And.
←→





(a, b)-Dyck paths
(0, 0)→ (b, a)
above y = a

b
x





9 6 5 3 2 1

5 2 1

2

1

−4 −3 −2 −1

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15
−4 −8 −12 −16 −20 −24 −28

3 −1 −5 −9 −13 −17 −21

10 6 2 −2 −6 −10 −14

17 13 9 5 1 −3 −7

Proof that the number of (a, b)-Dyck paths is 1
a+b

(
a+b
a

)
: (Bizley ‘55)

◮ Path rotation gives an equivalence relation on the set of
all lattice paths from (0, 0)→ (b, a).

◮ There are
(
a+b
a

)
such paths and the equivalence classes have

a + b elements each.
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Familiar numbers

t 1 2 3 4 5 6 n

# of (t, t + 1)-cores: 1 2 5 14 42 132 Cn

Specialize Anderson’s result:
# (t, t + 1)-cores
1

2t+1

(2t+1
t

)
= 1

t+1

(2t
t

)

Question: Is there a simple statistic on simultaneous core partitions
that gives us a q-analog of the Catalan numbers?

∑

λ is a
(t, t + 1)-core

qstat(λ) =
1

[t + 1]q

[
2t

t

]

q

Answer: Yes. We will create an analog of the major statistic.
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The major statistic

For a permutation π = π1π2 · · · πn, the major statistic maj(π) is
the sum of the positions of the descents of π:

maj(π) =
∑

i :πi−1>πi

i .
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For a permutation π = π1π2 · · · πn, the major statistic maj(π) is
the sum of the positions of the descents of π:

maj(π) =
∑

i :πi−1>πi

i .

For a (t, t + 1)-core λ, create the sequence b = (b0, . . . , bt−1),
where bi = # 1st col. boxes with hook length ≡ i mod t.

Define maj(λ) =
∑

i : bi−1≥bi

(2i − bi ).

See: maj defined as a sum
over descents in a sequence.
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The major statistic

For a permutation π = π1π2 · · · πn, the major statistic maj(π) is
the sum of the positions of the descents of π:

maj(π) =
∑

i :πi−1>πi

i .

For a (t, t + 1)-core λ, create the sequence b = (b0, . . . , bt−1),
where bi = # 1st col. boxes with hook length ≡ i mod t.

Define maj(λ) =
∑

i : bi−1≥bi

(2i − bi ).

See: maj defined as a sum
over descents in a sequence.

Theorem. (AHJ ’13)
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λ is a
(t, t + 1)-core
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The major statistic

For a permutation π = π1π2 · · · πn, the major statistic maj(π) is
the sum of the positions of the descents of π:

maj(π) =
∑

i :πi−1>πi

i .

For a (t, t + 1)-core λ, create the sequence b = (b0, . . . , bt−1),
where bi = # 1st col. boxes with hook length ≡ i mod t.

Define maj(λ) =
∑

i : bi−1≥bi

(2i − bi ).

See: maj defined as a sum
over descents in a sequence.

Theorem. (AHJ ’13)
∑

λ is a
(t, t + 1)-core

qmaj(λ) =
1

[t + 1]q

[
2t

t

]

q

Why? Major index on Dyck paths!
−3 −6 −9

1 −2 −5

5 2 −1

−3 −6 −9

1 −2 −5

5 2 −1

−3 −6 −9

1 −2 −5

5 2 −1

−3 −6 −9

1 −2 −5

5 2 −1

−3 −6 −9

1 −2 −5

5 2 −1

Add positions of valleys: 1
[4]q

[
6
3

]
q
= q0 + q2 + q3 + q4 + q2+4
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The Zeta Map (via cores)

Follow this recipe:

1. Start with any (a, b)-Dyck path P .
−4 −8 −12 −16 −20 −24 −28

3 −1 −5 −9 −13 −17 −21

10 6 2 −2 −6 −10 −14

17 13 9 5 1 −3 −7
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The Zeta Map (via cores)

Follow this recipe:

1. Start with any (a, b)-Dyck path P .

2. Find the corresponding (a, b)-core κ.
−4 −8 −12 −16 −20 −24 −28

3 −1 −5 −9 −13 −17 −21

10 6 2 −2 −6 −10 −14

17 13 9 5 1 −3 −7

9 6 5 3 2 1

5 2 1

2

1
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2. Find the corresponding (a, b)-core κ.

3. Highlight the boxes
in the a-rows and b-bdry of κ.

4. Let λ be the partition
with those number of boxes.

5. Draw the (a, b)-Dyck path Q

that bounds λ .
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3 −1 −5 −9 −13 −17 −21

10 6 2 −2 −6 −10 −14
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with those number of boxes.
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2. Find the corresponding (a, b)-core κ.

3. Highlight the boxes
in the a-rows and b-bdry of κ.

(Or in b-rows and a-bdry of κc)

4. Let λ be the partition
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The Zeta Map (via cores)

Follow this recipe:

1. Start with any (a, b)-Dyck path P .

2. Find the corresponding (a, b)-core κ.

3. Highlight the boxes
in the a-rows and b-bdry of κ.

(Or in b-rows and a-bdry of κc)

4. Let λ (µ) be the partition
with those number of boxes.

5. Draw the (a, b)-Dyck path Q (R)

that bounds λ . (µ)

−4 −8 −12 −16 −20 −24 −28

3 −1 −5 −9 −13 −17 −21

10 6 2 −2 −6 −10 −14

17 13 9 5 1 −3 −7

This defines the zeta map; ζ(P) = Q. (Or the eta map η(P) = R . )
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The Zeta Map (via the sweep map)
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1. Start with any (a, b)-Dyck path P .
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The Zeta Map (via the sweep map)

Follow this recipe:

1. Start with any (a, b)-Dyck path P .

2. Assign to each lattice point its level.

3. Write down the sequence of levels
(0, 0) (b, a)

with their associated N or E .

N

0,
E

7,
N

3,
E

10,
N

6,
N

13,
E

20,
E

16,
E

12,
E

8,
E

4
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The Zeta Map (via the sweep map)

Follow this recipe:

1. Start with any (a, b)-Dyck path P .

2. Assign to each lattice point its level.

3. Write down the sequence of levels
(0, 0) (b, a)

with their associated N or E .

4. Sort these from smallest to largest,
permuting the N’s and E ’s too.
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6,
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N
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E
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E
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E
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N

13,
E
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E
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1. Start with any (a, b)-Dyck path P .

2. Assign to each lattice point its level.

3. Write down the sequence of levels
(0, 0) (b, a)

with their associated N or E .

4. Sort these from smallest to largest,
permuting the N’s and E ’s too.

5. Read the steps as a new (a, b)-Dyck
path Q .
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4. Sort these from smallest to largest,
permuting the N’s and E ’s too.

5. Read the steps as a new (a, b)-Dyck
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N
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This is also the zeta map; ζ(P) = Q!
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The Zeta Map (via the sweep map)

Follow this recipe:

1. Start with any (a, b)-Dyck path P .

2. Assign to each lattice point its level.

3. Write down the sequence of levels
(0, 0) (b, a) (b, a) (0, 0)

with their associated N or E .

4. Sort these from smallest to largest,
permuting the N’s and E ’s too.

5. Read the steps as a new (a, b)-Dyck
path Q . ( R after rotating 180◦.)

N

0,
E

7,
N

3,
E

10,
N

6,
N

13,
E

20,
E

16,
E

12,
E

8,
E

4

E

0,
E

4,
E

8,
E

12,
E

16,
N

20,
N

13,
E

6,
N

10,
E

3,
N

7

N

0,
N

3,
E

4,
N

6,
E

7,
E

8,
E

10,
E

12,
N

13,
E

16,
E

20

E

0,
E

3,
E

4,
E

6,
N

7,
E

8,
N

10,
E

12,
N

13,
E

16,
N

20

This is also the zeta map; ζ(P) = Q! (Or the eta map η(P) = R! )
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Bijection?!?!?

◮ What a curious rule!

◮ Is it even well-defined?

◮ Claim: ζ is a bijection!

◮ Computer evidence points to yes!
◮ Inverse exists for (a, a+ 1)-cores (Dyck paths!)
◮ Inverse exists for (a, am+ 1)-cores

◮ NEW! If we know both Q and R , we can recover P .

◮ NEW! With a new statistic δ(P), we can iteratively recover P .
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An inverse knowing ζ(P) and η(P)

1. Start with paths ζ(P) = Q above diag.

and η(P) = R rotated below diag.

1 2 3 4 5 6 7 8 9 10 11
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

5 7 1 9 2 3 4 6 11 8 10
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2. Label steps with 1→ a + b.
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An inverse knowing ζ(P) and η(P)

1. Start with paths ζ(P) = Q above diag.

and η(P) = R rotated below diag.

2. Label steps with 1→ a + b.

3. Read off cycle permutation γ:
γ(i) is the step in R

opposite step i in Q.

1 2 3 4 5 6 7 8 9 10 11
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

5 7 1 9 2 3 4 6 11 8 10

(1, 5, 2, 7, 4, 9, 11, 10, 8, 6, 3)
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An inverse knowing ζ(P) and η(P)

1. Start with paths ζ(P) = Q above diag.

and η(P) = R rotated below diag.

2. Label steps with 1→ a + b.

3. Read off cycle permutation γ:
γ(i) is the step in R

opposite step i in Q.

4. Recover P from γ by converting
ascents to N and descents to E .

1 2 3 4 5 6 7 8 9 10 11
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

5 7 1 9 2 3 4 6 11 8 10

(1, 5, 2, 7, 4, 9, 11, 10, 8, 6, 3)

ր,ց,ր,ց,ր,ր,ց,ց,ց,ց,ց

N,E ,N,E ,N,N,E ,E ,E ,E ,E
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Research Questions

⋆ Can we extend combinatorial interps to other reflection groups?
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Research Questions

⋆ Can we extend combinatorial interps to other reflection groups?

◮ Yes! Involves self-conjugate partitions.

22

15
8
1

-6

-13

-20

23

16
9
2

-5

-12

-19

24

17

10
3

-4

-11

-18

25
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4
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6
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-15
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Research Questions

⋆ Can we extend combinatorial interps to other reflection groups?

◮ Yes! Involves self-conjugate partitions.

◮ Article (28 pp) published in Journal of Algebra. (2012)
Sets up the theory.

◮ Article (16 pp) published in European Journal of Comb. (2014)
Applies the theory.

◮ Joint with Brant Jones, JMU, Drew Armstrong, Miami.
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Research Questions

⋆ What numerical properties do self-conjugate core partitions have?
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Research Questions

⋆ What numerical properties do self-conjugate core partitions have?

◮ There are more (s.c. t+2-cores of n) than (s.c. t-cores of n).

4-cores of 22 6-cores of 22 8-cores of 22

13 11 6 5 4 3 1

11 9 4 3 2 1

6 4

5 3

4 2

3 1

1

17 11 8 7 5 4 3 2 1

11 5 2 1

8 2

7 1

5

4

3

2

1

13 9 8 7 3 2 1

9 5 4 3

8 4 3 2

7 3 2 1

3

2

1

19 11 9 7 6 5 4 3 2 1

11 3 1

9 1

7

6

5

4

3

2

1

13 11 6 5 4 3 1

11 9 4 3 2 1

6 4

5 3

4 2

3 1

1

15 11 7 6 5 3 2 1

11 7 3 2 1

7 3

6 2

5 1

3

2

1
11 9 7 6 3 1

9 7 5 4 1

7 5 3 2

6 4 2 1

3 1

1
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Research Questions

⋆ What numerical properties do self-conjugate core partitions have?

◮ There are more (s.c. t+2-cores of n) than (s.c. t-cores of n).

◮ Article (17 pp) published in Journal of Number Theory. (2013)
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Research Questions

⋆ What numerical properties do self-conjugate core partitions have?

◮ There are more (s.c. t+2-cores of n) than (s.c. t-cores of n).

◮ Article (17 pp) published in Journal of Number Theory. (2013)

◮ Joint with Rishi Nath, York College, CUNY.
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Research Questions

⋆ Properties of simultaneous core partitions.

◮ Question: Is there a core statistic for a q-analog of 1
s+t

(
s+t
s

)
?

⋆
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Research Questions

⋆ Properties of simultaneous core partitions.

◮ Question: Is there a core statistic for a q-analog of 1
s+t

(
s+t
s

)
?

◮ Progress: m-Catalan number C3 through (3, 3m + 1)-cores.

◮ Question: How do we find the statistic δ(P) from path ζ(P)?

◮ Progress: Known in certain cases.

◮ Article (34 pp) to appear in J. Combinatorial Theory Ser. A.

◮ Question: Why is the zeta map a bijection?

◮ Progress: Mystère et boule de gomme!

⋆ Happy to have students who would like to do research! ⋆
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