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Abstract. To achieve water resource sustainability in the

water-limited southwestern US, it is critical to understand the

potential effects of proposed forest thinning on the hydrology

of semi-arid basins, where disturbances to headwater catch-

ments can cause significant changes in the local water bal-

ance components and basinwise streamflows. In Arizona, the

Four Forest Restoration Initiative (4FRI) is being developed

with the goal of restoring 2.4 million acres of ponderosa pine

along the Mogollon Rim. Using the physically based, spa-

tially distributed triangulated irregular network (TIN)-based

Real-time Integrated Basin Simulator (tRIBS) model, we ex-

amine the potential impacts of the 4FRI on the hydrology of

Tonto Creek, a basin in the Verde–Tonto–Salt (VTS) system,

which provides much of the water supply for the Phoenix

metropolitan area. Long-term (20-year) simulations indicate

that forest removal can trigger significant shifts in the spa-

tiotemporal patterns of various hydrological components,

causing increases in net radiation, surface temperature, wind

speed, soil evaporation, groundwater recharge and runoff, at

the expense of reductions in interception and shading, tran-

spiration, vadose zone moisture and snow water equivalent,

with south-facing slopes being more susceptible to enhanced

atmospheric losses. The net effect will likely be increases in

mean and maximum streamflow, particularly during El Niño

events and the winter months, and chiefly for those scenarios

in which soil hydraulic conductivity has been significantly

reduced due to thinning operations. In this particular climate,

forest thinning can lead to net loss of surface water storage

by vegetation and snowpack, increasing the vulnerability of

ecosystems and populations to larger and more frequent hy-

drologic extreme conditions on these semi-arid systems.

1 Introduction and goals

1.1 Introduction

Quantifying the hydrological effects of extensive, human-

driven forest thinning is of primary importance for sustain-

able water resource management in semi-arid basins, where

disturbances in the upland vegetation density and architec-

ture can trigger zonal alterations to the components of the

water balance (Biederman et al., 2014), resulting, sometimes,

in streamflow shifts along an entire basin (MacDonald, 2000;

Reid, 1993; Webb and Kathuria, 2012). Because precipita-

tion is cycled through forests and soil, upland modifications

in vegetation cover are expected to affect the dynamics of

the entire basin in terms of water yield quantity and quality,

and peak and low flows (Jones, 2000; Moore and Wondzell,

2005; Schnorbus and Alila, 2004, 2013).

In north-central Arizona, the US Forest Service is leading

a collaborative effort known as the Four Forest Restoration

Initiative (4FRI), a large-scale restoration of ponderosa pine

(Pinus ponderosa) along the Mogollon Rim, with the primary

goal to mitigate fire risk through forest thinning (Hampton

et al., 2011; Stephens et al., 2013). In addition to the Phoenix
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metropolitan area (PMA), as well as other towns and cities

in the region, a number of ecological communities depend

upon the freshwater derived from basins, whose headwaters

extend along the restoration areas (Arizona Department of

Water Resources, 2010; Baker, 1986). Besides changes in

mean water yields, projected forest removal could potentially

affect base flows during dry periods (Dung et al., 2012; Lin

et al., 2007), while increasing the risks of downstream flood-

ing in the rapidly responsive, steep-slope mountain basins

(Eisenbies et al., 2007; Jones, 2000; Jones and Grant, 1996;

Jones and Post, 2004). It is, therefore, critical to understand

the hydrologic effects of forest thinning, in conjunction with

the cumulative effects of climate change and other stressors

(e.g., population increase, urbanization) that can be expected

to exacerbate the impacts of human interventions in current

basin land cover (Barnett et al., 2005; Dale et al., 2001; Na-

tional Research Council, 2008).

Traditionally, evidence of the connections between for-

est thinning and water yield responses has been based on

paired watershed studies. Most of these studies have iden-

tified immediate increases in runoff and sediment production

(Bosch and Hewlett, 1982; Brown et al., 2005; Hibbert, 1983;

Hornbeck et al., 1993; Sahin and Hall, 1996). However, in

basins where water yield depends mainly on snow accumula-

tion and melt, researchers have reported high variability and

uncertainty tied to site-specific topography, forest structure

and microclimatic conditions (Cline et al., 1977; Lundquist

et al., 2013; Schelker et al., 2013; Stottlemyer and Troendle,

2001; Troendle and Reuss, 1997; Venkatarama, 2014; Woods

et al., 2006). Multiple authors have found a direct relation-

ship between thinning, snow interception reduction and abla-

tion increase (Link and Marks, 1999; Lundquist et al., 2013;

Varhola et al., 2010; Venkatarama, 2014). In Arizona, most

of the data and knowledge regarding hydrologic response to

treatments in piñon–juniper and ponderosa pine forests have

been obtained from the Beaver Creek research watershed,

located within the Verde River basin (Baker, 1984, 1986;

Brown et al., 1974). Results indicate that the thinning of

poderosa pine leads to statistically significant short-term in-

creases in runoff, particularly in steep north-facing slopes.

In addition, the duration of snow on south-facing slopes is

affected by thinning intensity, overstory removal and higher

exposure to wind and solar radiation (Baker, 1986).

More recently, physically based, spatially distributed hy-

drological models have complemented the experimental ap-

proach to provide new insights into the processes under-

going change, both prior and post-forest removal (Bathurst

et al., 2004; Legesse et al., 2003; Li et al., 2007). Such work

indicates that, due to shifts in evapotranspiration and soil

hydraulic properties and moisture, increases in water yield

can be expected after forest thinning (Hundecha and Bar-

dossy, 2004; Li et al., 2007; Serengil et al., 2007; Webb and

Kathuria, 2012)

1.2 Goals, organization and scope of this paper

While much has been learned from the Beaver Creek experi-

ments, greater understanding is still necessary to provide the

long-term estimates of water yield needed by water managers

and land and water decision makers for semi-arid basins in

Arizona. In this regard, the application of highly realistic,

physically based, spatially distributed models that appropri-

ately simulate the detailed behavior of catchment dynamics

at relevant spatial and temporal scales can provide valuable

insights.

Here we examine the potential impacts of extensive for-

est thinning on the hydrology of Tonto Creek, selected as a

prototypical semi-arid watershed suitable for the inference

of long-term impacts on water yield and extreme conditions

on neighboring basins. Additionally, we explore the mech-

anisms responsible for change due to forest removal from

local to basin scale. Specifically, we examine the following

three questions related to the sustainability of water resources

in this region:

1. Is the 4FRI likely to produce significant alterations in

streamflow and the components of the water balance at

the basin scale?

2. If so, what are the expected magnitudes of annual and

seasonal water changes?

3. What are the physical mechanisms likely to be responsi-

ble for observed hydrologic shifts at the element (small-

est computational unit) scale and how do they alter the

soil column water balance in hillslopes having contrast-

ing aspects?

We address these questions using a calibrated, high-

resolution, catchment-scale hydrological model (see Sect. 3)

as a tool to reproduce the spatiotemporal dynamics of the

Tonto Creek basin, both prior and post-forest treatment,

under long-term (20-year) historic climate forcing. Using

20 consecutive years provides an ample range of climate

variability (including El Niño–Southern Oscillation (ENSO)

phases), while the study of feasible forest thinning scenarios

within a distributed model provides management and policy

relevance to the research questions in this study. In particular,

we analyze the shifts in the probability distribution functions

of mean and extreme (low and peak) streamflow values, and

the implications for water security and flood risk of down-

stream communities. Further, we investigate the inter-annual

and seasonal mechanisms that explain effects of forest thin-

ning on river flows, snow water equivalent, basin evapora-

tion and transpiration and soil water storage in the vadose

and saturated zones. Subsequently, a closer look to the spa-

tially distributed hydrological fields evidence their relation to

the areas where restoration occurred and the physical mech-

anisms responsible for such responses. Finally, a more de-

tailed analysis of the changes triggered at the element scale is
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Figure 1. Elements of the water balance in a forested hillslope: A fraction of the gross precipitation or snow (P) is intercepted by vegetation

(Int) and the remaining volume reaches the ground as net precipitation or snow (Pnet). Intercepted water (Int) is either unloaded from leaves

and branches (Punl) or temporarily stored for evaporation (Eint) back to the atmosphere. If snow occurs, Pnet builds up snowpack. When

thermodynamic conditions allow, retained water in the snow can sublimate (Ssnow), or after melting, it can infiltrate (Infmelt), runoff (R) or

be transpired by plants (T), evaporated from soil (Esoil), serve as groundwater recharge (GR) or remain as soil moisture in the vadose zone.

Analogously, if only liquid precipitation occurs, Pnet redistributes according to the processes mentioned above, except for the snow-related

mechanisms. Runoff (R) can be produced through infiltration excess, saturation excess, perched return flow and/or groundwater contribution

(Exf). Subsurface flow can occur through lateral vadose zone flow (SR) and/or groundwater flow (GWflow). An aerodynamic component has

been added to this plot to mark the importance of the surface roughness by trees on evaporation and sublimation water fluxes.

performed at sites having contrasting (north and south) hills-

lope aspect.

2 Background

2.1 Effects of forest thinning on hydrology

Forest disturbance and management activities have been

shown to influence nearly all components of the water bud-

get from the plot to the entire basin scale (Ice and Stednick,

2004; Waring and Schlesinger, 1985). Figure 1 illustrates the

components of the water balance in a typical forested hills-

lope in the semi-arid southwestern US (with snow presence

during the winter months). Liquid and solid precipitation (P)

are the principal controls on spatial distribution, timing and

magnitude of runoff, evapotranspiration, snow accumulation,

soil water fluxes and storage. Forest reduction will impact

mostly surface water storage and flow, and sub-surface flow

within the vadose zone. Removal of trees reduces leaf area

and, thus, plant interception (Int) allowing for more net pre-

cipitation (Pnet) to reach the ground surface (National Re-

search Council, 2008; Verry et al., 1983). During the win-

ter, reductions in Int lead to increases in snowpack depth

and cover (Woods et al., 2006). Increases in Pnet result in

increases in soil moisture, plant water availability and rapid

runoff production, particularly during intense rainfall events

(Helvey and Patric, 1965). In contrast, reduced biomass con-

sumes less water volume through plant transpiration (T) but

enhances evaporation from the soil, melted water and/or sub-

limation from frozen surfaces (Esoil, Ssnow) due to reduced

shading of clear-sky shortwave solar radiation and shelter-

ing for turbulent moment transfer by wind gusts (Biederman

et al., 2012; Gustafson et al., 2010; Harpold et al., 2012a,

b; Musselman et al., 2008; Veatch et al., 2009). Thus, water

yield increases are expected earlier in the year due to a pre-

mature snowmelt season caused by increased wind and short-

wave radiation exposure in this semi-arid, high elevation for-

est (Helvey, 1980; Hornbeck and Smith, 1997; Jones and

Post, 2004; Link and Marks, 1999; Mahmood and Vivoni,

2013; Megahan, 1983).
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Figure 2. Map detailing the projected 4FRI restoration area and the Verde–Tonto–Salt (VTS) watershed divides. Detailed river networks,

major cities and lakes, and the three basin outlets that define the VTS system are shown on a 30 m USGS digital elevation model.

It has also been shown that silvicultural manipulations in

forests, via prescribed fires, have produced changes in the hy-

draulic properties of the underlying soil that can persist for

several years, depending on the fire intensity and soil com-

position (Benavides-Solorio and MacDonald, 2005; DeBano,

2000; Moody et al., 2005; Neary et al., 1999; Robichaud,

2000; Shakesby and Doerr, 2006; Lear and Danielovich,

1988; Woods et al., 2007). Previous studies report reduc-

tions of between 10 and 40 % in soil hydraulic conductiv-

ity during post-fire conditions (Leighton-Boyce et al., 2007;

Robichaud, 2000; Shakesby and Doerr, 2006). Additionally,

effects of forest operations for mechanical thinning, such as

logging and carrying of heavy material on roads, trails and

hillslope contours, favor the occurrence of faster and larger

volumes of overland flow due to soil compaction (Bowling

and Lettenmaier, 2001; Cline et al., 2010; Cuo et al., 2006;

Fatichi et al., 2014; Harr et al., 1975; Jones and Grant, 1996;

Marche and Lettenmaier, 2001; Wemple and Jones, 2003).

Field studies conducted during pre- and post-treatment con-

ditions reveal reductions of up to 67 % in soil hydraulic con-

ductivity for randomly distributed locations within an area

mechanically restored with heavy equipment (Grace et al.,

2006; Grace III et al., 2007). The duration of this disturbance

to soil conditions has received very little attention in the lit-

erature; however, a few authors consider it to be highly vari-

able (from months to years) and dependent on both climate

conditions and whether recurrent operations are maintained

(Cline et al., 2010; Robichaud, 2000). The overall effects of

human-driven forest modifications include induced changes

in the basin hydrology through direct forest effects and soil

collateral effects, which then determine the total hydrologi-

cal response during storm and inter-storm periods.

2.2 The Four Forest Restoration Initiative as an agent

of hydrologic change for the Verde–Tonto–Salt

system

The 4FRI, led by the US Forest Service, is targeting the

restoration of up to 9712 km2 of contiguous ponderosa pine

of the Kaibab, Coconino, Apache–Sitgreaves, and Tonto Na-

tional Forests across the Mogollon Rim in Arizona. The

primary goal of 4FRI is to improve forest resilience and

function by reducing forest cover, through the use of pre-

scribed burns and mechanical thinning to historical condi-

tions similar to that of the early 20th century (Hampton et al.,

2011; Schoennagel et al., 2004). The projected treatment ar-

eas overlap with the headwaters of important water supply

basins, including the Little Colorado, an important tributary

of the Colorado River, and the Verde–Tonto–Salt (VTS) sys-

tem, whose surface waters serve important cities and villages

in north-central Arizona, including the PMA (see Fig. 2).

Agency representatives and stakeholder groups recently

agreed on future reductions in the current basal area con-

ditions of the ponderosa pine from an average of 2755 to

1332 m2 km−2, by focusing in the removal of small-diameter

trees (Hampton et al., 2011; Sisk et al., 2006) to reduce

the threat of intense fire events to human communities,

wildlife habitat and key ecosystem components (Allen et al.,
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Table 1. Topographic, soil, vegetation and bedrock characteristics of the Tonto Creek basin.

Property Value Property Value

Outlet coordinates 111.3035 W, 33.9890 N Std. slope [%] 20.95

Total area [km2] 1902.43 Major soil class 1 (% area) Sandy loam (79.21)

Length of main channel [km] 60.91 Major soil class 2 (% area) Sabdy clay loam (20.77)

Slope of main channel [m km−1] 21.77 Major soil class 3 (% area) Sand (0.02)

Mean elevation [m] 1552.25 Major vegetation class 1 (% area) Forest (69.03)

Minimum/maximum elevations [m] 766/2430 Major vegetation class 2 Shrubland (26.41)

Std. elevation [m] 323.19 Major vegetation class 3 Grassland (4.08)

Mean slope [%] 27.57 Kirpich’s Concentration time [h] 6.84

Figure 3. Spatial distribution of ponderosa pine consensus restoration for (a) pre-treatment basal area conditions, and (b) change in basal

area due to forest treatment. Data provided by the Laboratory of Landscape Ecology and Conservation Biology of the Northern Arizona

University (NAU)

2002; Chambers and Germaine, 2003). Figure 3a and b illus-

trates the current pre-treatment and projected post-treatment

change basal area of ponderosa pine for Tonto Creek. The

post-treatment scenario was obtained from the Four For-

est Restoration Initiative implementation plan (http://www.

fs.usda.gov/4fri). The reader is referred to (Hampton et al.,

2011) for more details on the density criteria and projections.

Restoration of sensitive areas is discouraged, including those

with steep slopes or sensitive soils, in proximity to streams,

having wildlife regulations, and areas of recent tree harvest-

ing. However, the vast majority of the ponderosa pine cov-

ered area, classified as community protection management

areas (CMPA), aquatic and municipal watersheds, Mexican

spotted owl (MSO) restricted and wildlife habitat, have been

declared suitable for restoration.

3 Study region, data and methods

3.1 Study region and watershed characteristics

The VTS system is located in the central Arizona highlands,

characterized by rugged mountains with steep slopes sepa-

rated by narrow valleys. The headwater catchments of the

VTS system lie on the Mogollon Rim, a large escarpment

that holds a wide diversity of vegetation types and ecosys-

tems (Arizona Department of Water Resources, 2010). Be-

cause of the high elevations and associated higher amounts

of rainfall and snowfall, the Mogollon Rim area contains the

state’s most important water-producing watersheds and the

greatest concentration of perennial streams, which, in turn,

support riparian habitat (Arizona Department of Water Re-

sources, 2010).

Precipitation is bimodal at a mean annual value of

481 mm yr−1, with the largest amounts during the winter

months due to frontal storm systems and a secondary rainy

period during summer, coincident with the highest evapo-

transpiration rates, via monsoon-driven precipitation (Ari-

zona Department of Water Resources, 2010). The mean an-

nual temperature and runoff in the region have been esti-

mated as 17.9 ◦C and 79.8 mm yr−1 (Arizona Department of

Water Resources, 2010). The VTS system provides ground-

water to small communities and individual farmers, mostly

based on the Tonto and Verde rivers, and, along with the

water allocation from the lower Colorado River through

the CAP (Central Arizona Project) canal, groundwater and

treated effluent, supplies water for the two million inhabi-

tants of the PMA in the Salt River Valley Water Users’ Asso-

ciation. We use the Tonto Creek basin as a case study to ex-

www.hydrol-earth-syst-sci.net/20/1241/2016/ Hydrol. Earth Syst. Sci., 20, 1241–1267, 2016
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Figure 4. Spatial distribution of (a) vegetation types from USGS National Land Cover Dataset (Homer et al., 2004) at 30 m resolution for

2006, (b) soil types from the State Soil Geographic (STATSGO) at 1 : 250 000 scale, and (c) depth to bedrock at 1500 m spatial resolution

as obtained from the Northern Arizona Regional Groundwater-Flow Model (Pool et al., 2011) clipped for Tonto Creek basin. Elevation

contours, hydrography and location of snow (SNOTEL, Promontory) and streamflow (USGS Tonto Creek above Gun Creek) stations are

also shown.

plore the potential impacts of the 4FRI during 20-year long

simulations by imposing historic climate forcing. Although

Tonto has the smallest catchment area in the VTS system,

the areal fraction covered by ponderosa pine is one of the

largest, and so it provides a good indication of the processes

triggered by forest removal across the whole VTS system.

Table 1 summarizes the major characteristics of this basin.

Slopes vary around a mean of 28 % with a standard devi-

ation of 21 % induced by drastic changes in elevation over

short distances. The contrasting relief and the steep slopes

lead to rapid runoff responses and short concentration (or re-

sponse) times. Figure 4 shows the spatial distribution of el-

evation, hydrography, vegetation, soils and depth to bedrock

for the study basin. Overall, the area is characterized by a

dominance of sandy loam soils, forest vegetation and deep

impervious rock. The projected restoration area lies between

the lines of 1800 to 2400 m elevation.

3.2 Observed hydrologic data and climate forcing

We compiled regional weather and rain gauge, snow, and

streamflow station data at a daily timescale from the NOAA,

National Climatic Data Center (http://www.ncdc.noaa.gov/

cdoweb/search), Natural Resources Conservation Service

(http://www.wcc.nrcs.usda.gov/snow/) and USGS National

Water Information System (http://waterdata.usgs.gov/nwis),

respectively (see Fig. 2). This set of stations was selected

because of the continuous data availability from 1 January

1990 to 30 December 2010, the prevalence of stations within

the VTS basin and few information gaps (< 0.5 % gaps).

For regional climate forcing, we used the NASA Land Data

Assimilation Systems data set (NLDAS; Mitchell et al.,

2004), which includes net radiation, atmospheric pressure,

air temperature, wind speed, precipitation and vapor pres-

sure (http://ldas.gsfc.nasa.gov/nldas/). NLDAS is released on

a one-eighth-degree grid over central North America on an

hourly basis, constituting a superb climate forcing for con-

tinuous, distributed modeling purposes. For precipitation,

NLDAS constructs its forcing data set from CPC (Climate

Prediction Center) PRISM (Parameter-Elevation Regressions

on Independent Slopes Model)-adjusted one-eighth-degree

daily gauge analyses, temporally disaggregated using Stage

II radar fields (Mitchell et al., 2004). Since the quality of

distributed hydrologic simulations highly depends on the

accuracy of Quantitative Precipitation Estimates (Carpenter

and Georgakakos, 2004; Collier, 2007; Moreno et al., 2013,

2014), we first evaluated and bias corrected NLDAS rainfall

forcing to minimize model error propagation from the pre-

cipitation input (see Appendix A1). Using NLDAS, it can be

seen that Tonto Creek presents a bimodal precipitation dis-

tribution with above-average values during DJFM and JAS

and a unimodal temperature pattern, whose peak occurs dur-

ing JJAS (Fig. 5). Further, a map with the spatial distribution

of mean annual precipitation and surface air temperature is

presented in Fig. 6. Compared with Fig. 3, it can be deter-

mined that projected areas for forest thinning coincide with

the higher annual basin precipitation (P > 500 mm yr−1) and

lower mean temperatures (Temp< 16 ◦C, see Fig. 6a, b).

3.3 Distributed hydrologic model

The triangulated irregular network (TIN)-based Real-time

Integrated Basin Simulator (tRIBS) (Ivanov et al., 2004a;

Vivoni et al., 2007b) is a continuous, physically based simu-
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Figure 5. Mean monthly values of precipitation (blue) and air tem-

perature (red) from 1990 to 2010 NLDAS time series within the

Tonto Creek watershed divide. Dashed lines represent mean annual

value for each variable. A water year starting in November will be

used henceforth to better visualize the changes in maximum and

minimum values due to forest thinning along the year.

lator of watershed dynamics. The model uses spatially vary-

ing topography, soil and vegetation characteristics and time-

evolving distributed climate forcing to represent the pro-

cesses governing movements of surface and subsurface wa-

ter in a basin. tRIBS uses a TIN scheme to reduce compu-

tational workload and accurately represent topography, wa-

ter flow paths and river networks (Vivoni et al., 2004). This

TIN geometry determines a network of sloped Voronoi poly-

gons that communicate through their edges by mass conti-

nuity and flux equations. Underground dynamics are con-

strained by spatially varying depth to bedrock, which acts

as an impermeable surface that determines the lower aquifer

boundary. tRIBS can be run on a multi-processor computer

by taking advantage of parallelization via domain decom-

position (Vivoni et al., 2011). tRIBS computes short- and

long-wave radiation fluxes using geographic location, time of

the year, cloudiness, aspect, emissivity, slope and albedo at

each computational element. Incoming solar radiation is re-

duced by vegetative shading according to the Beer–Lambert

law (Brantley and Young, 2007; Marshall and Waring, 1986)

(see Appendix B). Effects of distant landscape on the amount

of incoming radiation are accounted through radiation scat-

tering and sheltering functions that are controlled by land-

view factors and hillslope albedo (Rinehart et al., 2008). Sur-

face latent (i.e. evaporation and transpiration), sensible and

ground heat fluxes are computed using meteorological con-

ditions and soil moisture (Ivanov et al., 2004b). Snow pro-

cesses are accounted for through a single-layer snow mod-

ule with a coupled energy and mass balance approach that

accounts for direct and diffuse solar (shortwave) and long-

wave radiation, snow interception and unloading, sublima-

tion of intercepted and on-the-ground snow, accumulation

and ablation of snow and infiltration of meltwater (Mahmood

and Vivoni, 2013; Rinehart et al., 2008). Vegetation inter-

cepts snow falling in solid form, based on its leaf area index,

and unloads snow in relation to air temperature. Remain-

ing on-the-ground and canopy snow can be sublimated de-

pending on absorbed shortwave and long-wave radiation and

aerodynamic conditions (Liston and Elder, 2006; Pomeroy

et al., 1998; Wigmosta, 1994). Meltwater can either infiltrate

or run off and eventually is routed downslope to the chan-

nel as surface or subsurface runoff. Rainfall interception fol-

lows the canopy water balance scheme (Rutter et al., 1971,

1975) including throughflow, drainage, storage and evapora-

tion, values that are determined by plant architecture prop-

erties and vegetation fraction. Evapotranspiration processes

account for (1) evaporation from wet canopy (Eint), (2) evap-

oration from bare soil (Esoil), and T. Total evapotranspira-

tion (ET) is estimated using the Penman–Monteith equation

that depends on the surface energy balance and aerodynamic

conditions for surface and plants. The below-canopy distribu-

tion of the vertical wind speed follows a decay-exponential

function depending on the biometric features of the forest

determined by projected leaf area index (LAI) and vegeta-

tion height (see Appendix B) (Sypka and Starzak, 2013; Yi,

2008). Evapotranspiration partitioning depends on the abil-

ity of Esoil and T to extract soil water from the surface and

root zones and is determined by constant model stress fac-

tors (Ivanov et al., 2004a; Mendez-Barroso et al., 2013).

A kinematic approximation for unsaturated flow is used to

compute infiltration and propagate soil moisture fronts in an

anisotropic soil column according to an exponentially de-

caying hydraulic conductivity condition (Cabral et al., 1992;

Garrote and Bras, 1995; Ivanov et al., 2004a). The coupled

framework of the unsaturated and saturated processes results

in a set of runoff mechanisms, namely, infiltration-excess

runoff (Horton, 1933), saturation excess runoff (Dunne and

Black, 1970), groundwater exfiltration (Hursh and Brater,

1941), and perched return flow (Weyman, 1970). Routing of

surface flow is achieved via hydrologic overland flow and hy-

draulic channel routing that uses a kinematic wave approxi-

mation (Vivoni et al., 2007a).

3.4 Computational domain, model parameters and

initialization

We obtained a 30 m digital elevation model (DEM) from the

National Elevation Dataset (Gesch et al., 2002) for the central

Arizona region. A grid sensitivity analysis was performed,

leading to a convenient mesh simplification through selec-

tion of a coarser grid resolution that guaranteed: (1) preser-

vation of the spatial distributions of elevation, slope, curva-

ture and hillslope aspect, and (2) scheduling of a multiple-

year parallelized model calibration procedure in a feasible

period of time. A TIN geometry was then constructed follow-

ing a modified VIP (very important point) method that mini-

mized the number of computational nodes and the Kullback–

Leibler divergence between topographic density functions.

This resulted in an optimum horizontal point density of d =

0.86 and nt = 1970 (d = nt /ng , where nt is the number of

TIN nodes and ng is the number of DEM cells) with an equiv-

alent cell size of re = 964 m. The final TIN represents the

basin topography with high accuracy and preserves the finest
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Figure 6. Mean multi-annual distribution of (a) precipitation and

(b) air temperature values from 1990–2010 NLDAS time series for

the Tonto Creek basin.

level structures of stream network, river flood plains and wa-

tershed divide through a double buffer node strategy.

tRIBS requires specification of the spatially varying pa-

rameters associated with individual soil and vegetation

classes, and of those that describe the properties of the hill-

slope and channel network routing, and the underground

aquifer (Ivanov et al., 2004b; Moreno et al., 2012). Soil and

vegetation parameters are assigned to the different classes

represented in Fig. 4. Soil texture maps were derived from the

State Soil Geographic (STATSGO) database at 1 : 250 000

scale providing full regional coverage. Similarly, vegetation

type and fraction maps were obtained from the USGS Na-

tional Land Cover Dataset (Homer et al., 2004) at 30 m reso-

lution for the year 2006. Distributed land cover properties

were determined by vegetation parameters extracted from

ancillary 2006 Landfire products (http://www.landfire.gov/)

and mathematical expressions, from the literature, depend-

ing on the pre-treatment and post-treatment forest basal area

maps (see Fig. 3). Associated parameters include vegetation

fraction, LAI, vegetation throughfall and canopy storage (see

Appendix B). We consider only two vegetation fraction cases

(pre-treatment and post-treatment) ignoring any intermediate

vegetation phenology, re-growth or recurrent thinning opera-

tions (see Sect. 4.5). A spatially distributed bedrock depth

map, at 1500 m spatial resolution, was obtained from the

Northern Arizona Regional Groundwater-Flow Model (Pool

et al., 2011) and used to set a lower impermeable aquifer

boundary. Finally, a geomorphic relation between channel

width (w in m) and contributing area (A in km2) was de-

rived from 21 field measurements taken during a field cam-

paign along the basin main channel, resulting in the expres-

sion w = 9.303A0.243 with R2
= 0.76.

tRIBS also requires a spatially distributed initial condi-

tion, provided by the depth to groundwater surface, to set

soil moisture profiles following a hydrostatic equilibrium as-

sumption. A 1500 m spatial resolution hydraulic head map,

issued for spring 1990, from the Northern Arizona Regional

Groundwater-Flow Model (Pool et al., 2011) was adopted as

the distributed initial condition. The depth to groundwater

then had a mean value of 248 m with a standard deviation of

183 m. The model was spun-up for 1 year (January to De-

cember, 1990) when dynamic steady-state conditions were

reached in streamflow, groundwater and vadose zone mois-

ture profiles.

3.5 Calibration and evaluation strategy

Our results are supported by calibration and evaluation tests

with continually available hydrological information on the

ground. First, a one-at-a-time (OAT) sensitivity analysis fa-

cilitated determination of the relative importance of model

parameters as evaluated by performance criteria (Gupta et al.,

2009; Gupta and Kling, 2011), revealing that watershed re-

sponses are mainly controlled by the set of soil and vegeta-

tion parameters shown in Table 2. For the case of soil pa-

rameters, those properties are the saturated hydraulic con-

ductivity (Ks) and its decay exponent with depth (f), the air

entry bubbling pressure (ψb) and the pore size distribution

index (λ0). These parameters control the infiltration, percola-

tion, throughflow and runoff production rates, water retention

and vadose zone wet front evolution. Complementary, for the

vegetation classes, three parameters were found to dominate

the runoff production through controls on interception, soil

moisture, evapotranspiration and snowmelt rates. Those pa-

rameters are albedo (a), vegetation height (Hv) and optical

transmission coefficient (Kt). Parameters, other than those

listed in Table 2, were assigned reference values from the

literature within feasible ranges of variation (Ivanov et al.,

2004a, b; Moreno et al., 2012; Rutter et al., 1971). Subse-

quently, daily time series of streamflow (Q) and snow wa-

ter equivalent (SW) were used as targets for model calibra-

tion, during the 10-year period N = [01/01/1991,12/31/2000],

selected to include important drivers of seasonal and inter-

annual climate variability including winter frontal, mon-

soonal systems, Pacific decadal oscillation (PDO) and ENSO

events (Dominguez et al., 2010). For calibration, we imple-

mented a model pre-emption framework (Razavi et al., 2010)

to improve computational efficiency by terminating model

runs in poorly performing parts of the parameter space. The

Shuffled Complex Evolution (SCE) algorithm (Duan et al.,

1993) was used to find optimum values within feasible ranges

of variation that minimize the normalized residuals of simu-

lated and observed time series of Q and SW, as dictated by

the normalized objective function M(t) evaluated at each pre-
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Table 2. Model calibrated parameters for the period 1 January 1991 to 31 December 2010 at the Tonto Creek basin. Parameters for soil are

saturated hydraulic conductivity (Ks) and its decay exponent with depth (f), pore-size distribution index (λ0) and air entry bubbling pressure

(ψb) and for vegetation, albedo (a), vegetation height (Hv) and optical transmission coefficient (Kt).

Soil type Ks (mm h−1) λ0 (–) ψb (mm) f (mm−1)

Sandy loam 4.2881 0.3716 −133.2360 0.0291

Sandy clay loam 0.7376 1.5058 −740.8015 0.0366

Vegetation type a (–) Hv (m) Kt (-)

Forest 0.1805 32.0355 0.6417

emption time (t), according to the following expression:

M(t)= w1FQ(t)+w2FSWE(t); 0 ≤ t ≤ N (1)

with

Fx(t)=
SSEx(t)

Nσ 2
ox

; x =Q or x = SWE, (2)

SSEx(t)=
1

N

t∑
j=1

(xsim
j − x

obs
j )2, (3)

σ 2
ox =

1

N

n∑
j=1

(xobs
j − x̄

obs)2, (4)

w1 = w2 = 0.5, (5)

where w1 and w2 are optimization weights, σox is the stan-

dard deviation of observed values and xobs
j , xsim

j are the ob-

served and simulated values during simultaneous time steps

j.

Calibrated values, illustrated by Table 2, were then used

to evaluate model robustness during the period 1 January

2001 to 31 December 2010. Figure 7 shows the daily ob-

served and simulated time series of Q and SW for the calibra-

tion and evaluation periods with complementary information

about model skill at the daily timescale, in terms of the mean-

squared error (MSE), Nash–Sutcliffe efficiency (NSE) and

Pearson correlation coefficient ρso. Together, these scores

provide a complementary view of the model simulations

in terms of the mean, variability and overall correlation.

Figure 7 and skill scores suggest that despite certain dis-

crepancies in the simulation of long recessions, and certain

peak streamflows and snow water equivalent maximums, the

model is able to reproduce the distinct hydrologic patterns

that determine the presence of on-the-ground snow and mean

and variability of stream discharge. As indicated before, the

overall quality of hydrologic simulations is largely tied to

the quality of hourly precipitation inputs, whose uncertain-

ties propagate basinwise (Bardossy and Das, 2008; Borga

et al., 2006; Michaud and Sorooshian, 1994). Model robust-

ness is indicated by the evaluation scores, which summarize

predictive capability during the entire 20-year period.

3.6 Design of numerical experiments

Our goal is to understand the individual and collateral ef-

fects of forest thinning and related soil disturbances due to

forest removal operations on the total hydrologic response,

using historic climate forcing. Modeling experiments were

therefore conducted during the period 1 January 1991 to 31

December 2010 with adoption of a base-case scenario de-

termined by 2006 soil and vegetation cover maps (Fig. 4).

Forest thinning induces model changes in vegetation frac-

tion, LAI, vegetation throughfall and canopy storage (see

Appendix B). In all cases we assume that litter is also re-

moved from the thinned areas and vegetation condition does

not dynamically evolve during post-treatment conditions (see

Sect. 4.5). Soil changes are fundamentally represented by

modifications in the saturated hydraulic conductivity, which

are triggered by compaction and water-repellency processes

after mechanical thinning and prescribed burning. Given the

high uncertainty in such values, as reported in the literature,

we assume three additional cases of post-treatment steady re-

ductions in original soil hydraulic conductivity (impervious-

ness; from Table 2) between 10 and 40 % (10, 20, 40 %) of

the current values and only in the areas covered by ponderosa

pine. Table 3 summarizes the simulation of scenarios and the

corresponding adopted naming convention (case). While rep-

resenting post-fire conditions as constant over time might be

considered unrealistic, the results are indicative of the imme-

diate sensitivity of basin response to a drastic (as planned)

land cover change. Spatially distributed water footprints due

to forest thinning can be understood through an element-

scale view of the long-term shifts on water fluxes and stocks.

This analysis is performed through the selection of multiple

domain elements located within forest treated areas of differ-

ent thinning intensity values; elements with contrasting so-

lar aspects are paired according to similar elevation, slope,

air temperature, wind speed, net radiation, evapotranspira-

tion and soil moisture to compare their hydrologic evolution

from pre- to post-treatment conditions. A total of eight ele-

ment pairs were found to fulfill these requirements. For each

element, the components of the water balance can be esti-

mated as in the soil column schematic in Fig. 8, where sur-

face and subsurface reservoirs and input/output fluxes have

been included in annual (Mt = 1 year) mass continuity equa-
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Figure 7. Observed (blue lines) and simulated (red lines) hydrograph and snow water equivalent time series resulting from model calibration

(1991–2000) and validation (2001–2010) at the basin outlet and collocated snow station model Voronoi element (shown in Fig. 4), along

with NSE, MSE and ρso skill scores. To improve the visualization of low streamflow values, the time series of discharges have been elevated

to a 0.5 exponent. Mean Areal and pixel Precipitation (MAP and P , respectively) are derived from the corrected NLDAS product.

Table 3. Description of reference case (Ref) and hydrologic simulation (V, VS10, VS20, VS40) scenarios in terms of modifications in forest

and soil properties.

Case Forest cover Soil

Ref 2006 basal area Calibrated Ks

V Post-treatment basal area Calibrated Ks

VS10 Post-treatment basal area 10 % reduction in Ks across soil types in ponderosa pine areas

VS20 Post-treatment basal area 20 % reduction in Ks across soil types in ponderosa pine areas

VS30 Post-treatment basal area 30 % reduction in Ks across soil types in ponderosa pine areas

tions (Eqs. 6–8). The different pre- and post-forest-thinning

components of the water balance in the soil column are ap-

praised to only evaluate the effect of thinning in contrasting

hillslope aspects.

Input−Output=
1(Storage)

1t
(6)

P + (Rin−Rout)+ (θin− θout)+ (GWin−GWout)−

Ssnow− Sint−Esoil−Eint− T =

1(SW)

1t
+
1(Int)

1t
+
1(θ)

1t
+
1(GW)

1t
(7)

P +R+ θf +GWf− Ssnow− Sint−Esoil−Eint− T

=
1(SW)

1t
+
1(Int)

1t
+
1(θ)

1t
+
1(GW)

1t
(8)

4 Results and discussion

4.1 Streamflow shifts and extreme event probability

Forest removal affects the distribution and magnitude of

streamflows in a different manner depending on the seasonal

magnitude of runoff generation, the shifts in INT, SW, θ and

GW and the soil hydraulic conditions imposed by thinning

operations. Field observations have shown an immediate de-

crease in soil hydraulic conductivity, but recovering to his-

toric soil conditions with time, after forest treatment. This

section addresses the concerns for increased flood risks dur-

ing heavy rainstorms and sustained river water supply for

urban populations and ecological processes during low dis-

charge conditions, as a result of a vegetation-reduced system.

According to the annual patterns of precipitation, temper-

ature (Fig. 5) and streamflow (Fig. 11a), there are three dif-

ferentiable conditions in Tonto Creek characterized by the

(1) wetter, higher flows during winter (e.g. January) sea-

son and (2) the summer monsoon (e.g. August), and (3)

drier, low flow circumstance during the pre-monsoon period

Hydrol. Earth Syst. Sci., 20, 1241–1267, 2016 www.hydrol-earth-syst-sci.net/20/1241/2016/



H. A. Moreno et al.: Hydrologic effects of forest thinning 1251

Figure 8. Soil column water balance storages and fluxes of a typ-

ical hillslope computational element. The computational element’s

Voronoi geometry has been represented by a rectangular shape in

the interest of simplification. Water is mostly stored through vege-

tation interception (Int), snow accumulation (SW), vadose zone soil

moisture (θ ) and groundwater in the saturated zone (GW). Surface

and subsurface water (in and out) fluxes include above canopy gross

precipitation (P ), vegetation transpiration (T ), evaporation from in-

tercepted water (Eint), evaporation from soil (Esoil), sublimation

from intercepted (Sint) and on-the-ground snow (Ssnow), net sur-

face (R = Rin−Rout) and subsurface runoff (θf = θin− θout) and

net groundwater flow (GWf=GWin−GWout). The column is con-

strained by an impervious bedrock layer, whose depth varies from

element to element.

(e.g. June). Hourly time series from the reference and simu-

lated cases are classified by hydrologic period (winter, pre-

monsoon, monsoon and all months included) to understand

the probability distribution shifts that forest thinning pro-

duces on quartiles, Q1 through Q4 (where Q1 and Q4 corre-

spond to low and high flows, respectively) and low-order sta-

tistical moments (µ, σ ) of long-term (20-year) simulations

(Fig. 9). Results are expressed in terms of ratios relative to

distributional values obtained by the reference case for each

type of hydrologic condition.

Model results indicate that Q1, µ, σ and Q4 are larger

across cases, confirming not only the higher runoff efficiency

but also the increased flood risk for riverine communities

during the winter season under post-treatment conditions. In

contrast, during the monsoon season, differences in the soil

hydraulic conductivity play a major role in the distribution of

streamflow values. For instance, V and VS10 produce net re-

ductions in µ, σ and Q4; increases in the same statistics are

observed for the most impervious cases (VS20, VS40). In

the long term, if hydraulic conductivities return to normal, it

might mean reductions in the mean and extreme runoff pro-

duction during monsoon showers. On the other hand, dur-

ing pre-monsoon conditions, forest thinning seems to be in-

creasing the lowest streamflows, but has a mixed effect on µ,

σ , Q3 and Q4. In these cases, the less impermeable scenar-

ios achieve reductions in distribution values, indicating drier

hydrologic conditions, while the most permeable scenarios

(VS20, VS40) evidence increases in the same distributional

parameters.

Results for all months together suggest net increases in Q1,

µ, σ and Q4, indicating a net distributional shift to the right,

relative to the reference case. These changes in distributional

values of streamflow triggered by land cover changes may

support the need for decision making oriented towards water

preservation during dry conditions and mitigation or adapta-

tion of the negative effects of floods on urban settings and

ecological communities.

4.2 Effects of forest thinning on mean and variability

of basin-scale water balance components

Hydrologic effects of headwater forest thinning are reflected

through both local changes in the mean and variability of wa-

ter fluxes and stocks and basin-scale shifts in discharge yield.

The following analysis supports this statement by quantify-

ing the magnitude and direction of the water changes that

are statistically significant at the basin scale. First, an inter-

annual examination is conducted to understand shifts in key

water variables and their patterns, both in the long-term and

during warm and cold phases of ENSO. Like the entire south-

western US, the Tonto Creek basin experiences increases in

total annual P during El Niño (by 20 %) and reductions dur-

ing La Niña (by 11 %), with both phases presenting slight re-

ductions in mean air temperatures (Temp), as estimated from

NLDAS corrected 20-year records (Fig. 10a and b). Since

water balance is affected by ENSO, alterations in the basin’s

response to forest thinning are also expected. In addition to

inter-annual variations, seasonal shifts are expected as mod-

ifications in the below-canopy energy balance, wind speed

and net precipitation impose differential effects according to

each month’s climate regime. Results are presented in terms

of each simulated case relative to the corresponding refer-

ence scenario, and for each ENSO phase type, as 20-year

mean and standard deviation ratios and monthly absolute dif-

ferences.

4.2.1 Inter-annual trends

In the long-term, forest thinning leads to changes in water

distribution that are exacerbated during an ENSO event. Re-

sults suggest increased annual average streamflows (Q) of up

to 7 %, but reductions of SW of 16 % and snow covered area

(SA) of about 5 % (Fig. 10c), while only slight reductions
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Figure 9. Long-term ratios (Qcase /Qref) between streamflow probability distribution properties for the forest thinning scenarios and the

reference case, computed from hourly simulated time series for typical winter (January), pre-monsoon (June) and monsoon (August) months

and all months. Statistical properties include first, second, third and fourth quartiles (Q1, Q2, Q3 and Q4), mean (µ) and standard deviation

(σ ). In all plots, the dashed line represents the reference case.

(less than 2 %) in vadose zone soil moisture and evapotran-

spiration (θ and ET) are observed. Similarly, 10 cm and root

zone soil moisture (θ10 and θroot) and depth to groundwater

(DG) do not show significant changes, relative to the refer-

ence case. Comparatively, thinning simulation cases differ-

entially impact the mean Q, with VS40 being the most effi-

cient in increasing runoff through a decrease in soil infiltra-

tion capacity. In addition, temporal hydrologic variability ap-

pears to be dampened by forest thinning, with the exception

of streamflow, as illustrated by the lower time series standard

deviations of Fig. 10d. Interestingly, ENSO appears to mod-

ulate these shifts by exacerbating or moderating forest thin-

ning impacts. For instance, El Niño enhances direct surface

responses in Q and θ10 and compensates for the losses in SW

and SA. In contrast, La Niña dramatically reduces Q, SW and

SA (See Fig. 10c). In terms of time series variability, ENSO

appears to intensify reductions in inter-annual variability due

to forest thinning across the tested variables, with the excep-

tion of ET during La Niña and SA during EL Niño, as il-

lustrated by Fig. 10d. A seasonal analysis (next subsection)

facilitates identification of the emerging monthly patterns re-

sponsible for these inter-annual trends.

4.2.2 Seasonal shifts and emerging hydrological

patterns

At the monthly scale, forest thinning increases streamflows

and groundwater recharge, at the expense of reduced inter-

ception and snowpack, and a pattern emerges of a less reg-

ulated runoff system that exacerbates both higher and lower

levels of river flow. At Tonto Creek, the high precipitation

and low air temperatures during winter months drive the uni-

modal annual cycle of Q and SA with maximum values in

January of each year (Fig. 11a, f). Cumulative effects of this

wetter period are also observed through delayed responses
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Figure 10. Mean multi-annual (a) precipitation and (b) air temper-

ature values at Tonto Creek during the 1990–2010 period (grey),

El Niño (red) and La Niña (blue) years. Standard deviation bars

have been added to each variable. ENSO phases follow the anoma-

lies in the Oceanic Niño Index from the NOAA National Predic-

tion Center at http://wwww.cpc.ncep.noaa.gov/products/analysis_

monitoring/ensostuff/ensoyears.html. (c) Mean µ(X)case /µ(X)ref

and (d) standard deviation σ(X)case /σ(X)ref ratios between forest

thinning simulated scenarios (V, VS10, VS20, VS40) and the ref-

erence case (represented by the dashed black lines) for all (grey),

El Niño (red) and La Niña (blue) years for eight basin-scale hy-

drologic variables (X on the x axis) that include outlet streamflow

(Q), 10 cm depth, root and vadose zone soil moisture (θ10, θroot,

θ ), depth to groundwater table (DG), evapotranspiration (ET), snow

water equivalent (SW) and snow covered area (SA) mean basin val-

ues.

of θ , DG and SW, with maximum peaks appearing in March

(Fig. 11b, c, e). Comparatively, the second rainfall peak only

produces Q values below the annual mean, as most water

leaves the basin through higher ET rates, a typical behavior

of water-limited basins (Fig. 11a, d). For the most part, forest

thinning tends to increase Q, in particular for those months

with already high runoff production and for those cases with

the most impervious soils (i.e., DJF and VS40; see Fig. 11g).

Nonetheless, during the monsoon season (JAS), changes in

Q are less clear across thinning cases with the less impervi-

ous scenarios (V, VS10) instead showing net reductions in

Q, even when ET values have been simultaneously reduced

(Fig. 11g, j). The emerging shift in patterns of SW and SA

reveal reductions that are more marked during their peak val-

ues (i.e. during MA; Fig. 11k, l).

Aside from SW, vadose zone water availability (θ ) does

not show significant changes during the year due to thinning

(Fig. 11h). In contrast, the depth to groundwater decreases

almost uniformly year round, with the least impervious sce-

nario having the largest aquifer recharge values (Fig. 11i). On

balance, reductions in snow water equivalent and, less likely,

in evapotranspiration linked to vegetation removal, compen-

sate for the increased (especially winter) runoff and ground-

water recharge, resulting in an emerging pattern shifting from

surface snow to groundwater storage, an issue in semi-arid

basins, whose deep aquifers may remain disconnected from

the channel base flows for many months of the year. A de-

tailed spatial analysis (see the next sub-section) provides in-

formation about important local water trends for mountain

ecosystems settled directly on thinned areas of the forest.

4.3 Distributed hydrologic effects of forest removal

As forest reduction will only occur in the headwaters of

Tonto Creek basin (see Fig. 3), direct hydrologic effects are

likely to be particularly marked in such areas, which are sub-

ject to higher annual basin precipitation and lower mean tem-

peratures. Figure 12 presents the spatial hydrologic patterns

for the reference case (first column) and projected changes

for three representative cases (V, VS10, VS40; columns 2

through 4) relative to the reference. Results shown in Fig. 12

indicate that averaging over time, spatial differences due to

changes in soil hydraulic conductivity (i.e. V vs. VS10 or

VS40) are not salient among cases but rather that any level

of forest removal imposes major changes in local water.

Runoff and soil moisture: in terms of runoff (Rref), current

rates attain the highest values in shrubland and low basal area

ponderosa pine cover, as most of the water in forested areas

is intercepted or bound up by snowpack for slower release to

the channel network in the spring. Consistently across scales,

thinning promotes increases in local runoff production, of up

to 40 % in heavily thinned areas and for the most impervi-

ous case (VS40). On the other hand, storage of water in the

vadose zone (θref) is characterized by higher values in prox-

imity to the channel network and riparian areas, particularly

in high elevation areas, dominated by forest cover and higher

rainfall values. Forest removal induces mixed shifts in θ , but

a dominant reduction trend is observed in heavily thinned ar-

eas, with VS40 producing the largest reduction rates (of up

to 15 %) in θ .

Evapotranspiration: coupled to soil moisture, atmospheric

losses through evapotranspiration are evidently larger along
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Figure 11. Mean monthly values of (a) outlet streamflow (Qref), (b) vadose zone soil moisture (θref), (c) depth to groundwater (DGref),

(d) evapotranspiration (ETref), (e) snow water equivalent (SWref) and (f) snow covered area (SAref), for the reference case as computed

from 20-year (1991–2010) model simulations and integrated over the entire basin area; mean annual values are represented by dashed lines

in each plot. Mean monthly differences µ(X)case /µ(X)ref between thinning simulated (V in blue, VS10 in green, VS20 in orange and

VS40 in red) and reference case (zero value) are illustrated for (g) outlet streamflow µ(Q)case /µ(Q)ref, (h) vadose zone soil moisture

µ(θ)case /µ(θ)ref, (i) depth to groundwater µ(DG)case /µ(DG)ref, (j) evapotranspiration µ(ET)case /µ(ET)ref, (k) snow water equivalent

µ(SW)case /µ(SW)ref and (I) snow covered area µ(SA)case /µ(SA)ref

the river network and riparian areas where ET consumes

available surface and subsurface water through rates that

equal annual precipitation (ET∼P ∼ 700 mm yr−1) in some

riparian corridors. Except in heavily thinned transects with

slightly higher temperature (Temp), where increases of up to

30 mm yr−1 in ET are seen, the vast majority of the thinned

area indicates decreases in ET, of up to 40 mm yr−1, presum-

ably associated to reductions in transpiration rates (T). As
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Figure 12. Simulated mean (first column) and projected changes (columns 2 through 4) in the mean multi-annual distribution of runoff

(Rref), vadose zone soil moisture (θref), evapotranspiration (ETref), longest number of days with snow cover (NDSref) and maximum season

snow water equivalent (SWmaxref) due to forest thinning. Projected changes for the V, VS10 and VS40 cases are presented in terms of ratios

or absolute differences, using the same color scale.

impervious cases (i.e., VS40) produce increases in surface

runoff production to river network, both θ and ET decrease

more drastically.

Snow: in terms of snow processes, current conditions al-

low for the formation, accumulation and melt of on-the-

ground snow differentially across the Mogollon Rim during

the winter and spring months. In the case of the Tonto Creek
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Figure 13. Long-term element-scale shifts in mean water fluxes and stocks relative to the reference case during 20-year model simulations.

Results are presented for (a) 7N–6S, and (b) 6N–7S, as representative element pairs with different thinning degrees and contrasting hillslope

aspects. Tested cases (V, VS10, VS20, VS40) are differentiated by the geometric symbols aligned vertically for each variable with north

represented by solid and south represented by hollow symbols. Water fluxes include runoff (R), groundwater flow (GWf), sublimation from

on-the-ground snow (Ssnow) and intercepted (Sint) snow, evaporation from soil (Esoil) and intercepted water (Eint), vegetation transpiration

(T ) and total evapotranspiration (ET). Water stocks include vegetation interception (Int), on-the-ground snow water (SW), vadose zone soil

moisture (θ ) and groundwater storage (GW). Auxiliary variables, including 2 m surface temperature (Ts), wind speed (WS), net radiation

(NR) and soil moisture at 10 cm and root zone depths (θ10 and θroot), have been added to the plot to aid interpreting budget shifts.

basin, exceptional wet, cold winter seasons result in a local

maximum of 1000 mm snow water equivalent (SWmaxref),

with snowpack persisting (NDSref) for up to 170 consecutive

days. Forest thinning consistently reduces NDS for as long as

60 days and SWmax by as much as 350 mm, in the most in-

tensively thinned areas by an increased forcing of shortwave

energy on thinned patches.

In summary, model simulations reveal that vegetation re-

moval is the most important factor determining distributed

changes in fluxes and storages of water, more so than hy-

draulic changes in soil. The Tonto Creek basin presents spa-

tially distinct responses to forest thinning characterized by

punctuated increases in runoff and generalized decreases in

soil moisture, evapotranspiration and snow persistence and

volume, compared to historically simulated levels. In the next

sub-section, the physical mechanisms inducing change at the

element level are explored in higher detail, through soil col-

umn analysis of multiple computational elements with con-

trasting annual radiation differences.

4.4 Soil column water balance in hillslopes with

contrasting solar aspect

This section aims to identify the effect of forest thinning in

contrasting solar aspects. Figure 13 (a and b), summarizes

two examples of the typical shifts in the soil column water

balance terms as a proportion of the reference case. Although

only two element pairs (7N, 6S and 6N, 7S) are shown, the

balance of evidence indicates that forest thinning induces lo-

cal increases in below-canopy Pnet (P –Int), NR, Ts and WS,

which trigger increases in R (exacerbated by soil impervious-

ness), Ssnow, and Esoil, at the expense of reductions in GWf,

Int, Eint, T and SW. While, in general, the soil columns expe-

rience comparatively slight reductions in ET, one of the most

evident shifts involves a compensatory partitioning with re-
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Figure 14. Mean annual cycles of simulated reference (black) and tested (colored) cases for an element pair (7N, 6S) as obtained from 20-year

model results. Variables include atmospheric losses (ET + S) for all evaporation, transpiration and sublimation rates, net runoff production

(R), snow water equivalent (SW), vadose zone soil moisture (θ ) and groundwater storage (GW). V, VS10, VS20 and VS40 are represented

by blue, green, orange and red colors, respectively. Mean annual changes (1x) have been added to each variable to compare mean monthly

changes relative to each reference case.

ductions in Eint and T and increases in Esoil in both hillslope

aspects. The degree of thinning (1VF %) appears to elicit

a direct and proportional influence on the relative change of

NR, Ts, Int, Ssnow,Esoil,Eint, T and SW across the eight pixel

pairs.

A more detailed scrutiny of these trends during a typi-

cal water year is illustrated by Fig. 14 for an element pair

(7N–6S), and considers the most important fluxes and reser-

voirs ranging from atmospheric (ET+ S), surface (R, SW)

and subsurface (θ , GW) components. Table 4 shows mean

total annual changes across the eight element pairs (N , S)

for all tested cases. Figure 14 and Table 4 indicate that larger

reductions in the total atmospheric losses (ET+ S) can be

achieved in the north-facing slopes, particularly for the most

impervious cases (e.g., VS20, VS40) and more marked dur-

ing the first ET peak in March. Additionally, larger gains in

runoff are achieved from the north-facing slopes especially

during the winter peak and more significantly for the most

impervious cases (i.e. VS20, VS40).

Regarding water reservoirs, reductions in snow water due

to forest thinning are far larger for south-facing slopes where

four elements (1S, 5S, 3S, 7S) evidence total depletion of
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Table 4. Mean annual differences between forest thinning scenarios (V, VS10, VS20, VS40) and reference case for atmospheric losses

(ET + S), runoff (R), snow water equivalent (SW), vadose zone moisture (θ ) and groundwater storage (GW) across eight element pairs with

contrasting (north, south) hillslope aspects.

North aspect South aspect

µ(1x) V VS10 VS20 VS40 V VS10 VS20 VS40

µ(1(ET + S)) [mm yr−1] −16.25 −17.13 −18.18 −21.09 −11.35 −12.08 −12.74 −14.09

µ(1R) [mm yr−1] 0.31 0.42 0.56 0.91 0.2 0.29 0.32 0.49

µ(1SW) [mm yr−1] −81.48 −81.48 −81.48 −81.48 −197.54 −197.54 −197.54 −197.54

µ(1θ) [mm yr−1] −62.44 −58.60 −54.11 −43.39 −81.23 −79.41 −82.94 −78.10

µ(1GW) [mm yr−1] 316.77 294.75 269.10 208.06 419.40 407.02 423.46 398.58

snowpack between 15 and 25 days earlier than during refer-

ence conditions. The trade-offs between less snow and faster

melt mechanisms are clear through the increase of element

runoff and a greater recharge (GW) of the aquifer, whose

groundwater table levels appear deep and sometimes discon-

nected from the surface channel network. The interplay of θ

and GW is clear when comprehensible increases in saturated

thickness lead to corresponding reductions in vadose zone

water storage in the bedrock-limited soil column element.

4.5 Model assumptions and study limitations

This section explains a set of important model assumptions

and limitations that help with the interpretation of the results,

estimation of the scope and identification of potential lines

for future work from this study. The following items are pre-

sented without an order of importance as the amount of un-

certainty introduced by each of them was not quantified in a

systematic fashion.

1. The model does not consider dynamic changes in vege-

tation physiology, re-growth and/or mortality rates. This

assumption ignores the actual (probable) response of

vegetation to post-treatment conditions, if thinning op-

erations are discontinued. This would include, but is

not limited to, progressive increases in basal area (and

thus sapwood area), concomitant linear increase in pro-

jected leaf area index for conifers (McDowell et al.,

2008) and the accompanying physiological, radiative

and hydraulic responses of the overstory and understory

vegetation (dePury and Farquhar, 1997; Ivanov et al.,

2008; Sampson et al., 2006) being ignored. Notwith-

standing, typical growth rates (woody increment) at this

geographic region are of about 2 % per year, depend-

ing on the species (Worley, 1965), and so likely canopy

processes would be slow to respond during the model-

ing period considered in this study. A misrepresentation

of the vegetation evolution during post-treatment time

would, most likely, result in underestimation of inter-

ception capacity and on-the-ground snow duration but

overestimation of runoff rates.

2. The model does not consider gradual recovery in

soil saturated hydraulic conductivity during the post-

treatment condition that would, most likely, result in re-

duction of runoff volumes but increases in vadose zone

soil moisture.

3. The uncertainty propagation from the NLDAS precip-

itation product to the hydrologic simulations and the

lack of “ground-truth” hydrologic information (i.e. rain

gauges, nested streamflow gauges, snow, evapotranspi-

ration and soil moisture stations) hinders the entire val-

idation process and simulation skill and constrains the

comparison to only a few measuring stations of stream-

flow and snow. This fact seriously constrains extrapo-

lation of results to other variables that were not ver-

ified during this modeling effort. Nonetheless, results

can be fully understood relative to a base-case scenario

that aimed to reproduce hydrologic conditions as real as

possible.

4. Finally, the model did not analyze the effects of forest

thinning in sediment and pollutants load to streams and

reservoirs. Further studies should investigate the com-

bined effects of deforestation and their subsequent shifts

in water residence times from surface to groundwater

reservoirs.

5 Summary and conclusions

This study investigated the long-term effects of simulated

forest thinning for both element and basin-scale hydrologic

balance and extreme discharges in a semi-arid basin of the

southwestern US. We used the 4FRI forest restoration project

as the context for these silvicultural operations applied to

the headwaters of Tonto Creek along the Mogollon Rim, the

most water productive region in Arizona. Long-term hydro-

logic simulations in this basin are challenging due to topo-

graphic complexity as well as the lack of ubiquitous hydro-

logic measurements on the terrain. In appraising the spa-

tiotemporal water footprints of forest removal, we inves-

tigated the changes induced in the probability distribution
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functions that involve mean and extreme discharge events in

long-term and during three distinct seasonal hydrologic con-

ditions. The mechanisms that support this shift behavior are

explored through an analysis of the inter-annual and seasonal

effects on the mean and variability of hydrologic variables

and the water-related outcomes induced by the occurrence of

ENSO phases. Finally, an emphasis was placed on identify-

ing the mechanism through which water transitions occur due

to changes in the solar radiation, surface temperature, wind

speed and water balance at the element scale in contrasting

slope aspects. Our results are summarized below.

1. Forest thinning leads to a less regulated hydrologic sys-

tem for mean and extreme events. A probabilistic anal-

ysis of the magnitude of recurrence of mean and ex-

treme event conditions indicates a net increase in the

annual streamflow distributions, particularly dominated

by larger, consistent increases in mean and maximum

events during the winter months. This shift can increase

the risk of negative flood-related effects directly down-

stream of the treated areas. For the less impervious sce-

narios (V, VS10), consistent increases in runoff are not

observed for the mean and higher quartiles during the

dry and low flows of the pre-monsoon and monsoon

seasons, leading to an even drier hydrologic condition.

Consistently across seasons, impervious soils contribute

to increased streamflow values.

2. Headwater forest thinning can lead to hydrologic shifts

in the areas directly affected by this procedure that

are reflected by anomalies in the average basin-scale

integrated values. Observable basin-scale changes oc-

cur through increases in runoff (7 %) and decreases in

snow-water (−16 %) and snow-covered areas (−5 %).

This result is consistent with recent observations in high

elevation forests (Metcalfe and Buttle, 1998; Mussel-

man et al., 2008; Lindquist et al., 2013; Venkatamaran,

2013). Increases in soil impermeability due to removal

operations exacerbate alterations, particularly in runoff

volume. Climatic stressors like ENSO affect the magni-

tude of such re-distributions, principally through mod-

ifications in precipitation availability. For instance, El

Niño appears to exacerbate runoff production while La

Niña reduces snow presence due to a rainfall suppres-

sion effect.

3. At the monthly scale, forest thinning results in stream-

flow augmentation, particularly during the winter pre-

cipitation peak but less clearly for the monsoon season,

when the most permeable scenarios instead decrease

runoff yields, on average. Conversely, consistent reduc-

tions in the depth to groundwater (maximum in Jan-

uary), evapotranspiration (maximum in July) and snow

water (maximum in April), are observed across sim-

ulated scenarios, thus lowering the historic maximum

values occurring in corresponding months.

4. The Tonto Creek basin presents spatially distinct re-

sponses to forest thinning characterized by local in-

creases in runoff and generalized decreases in intercep-

tion, soil moisture, evapotranspiration and snow persis-

tence and volume, when compared to the current refer-

ence case. In terms of runoff, local increases in runoff

production in heavily thinned areas and for the most im-

pervious case (VS40) are observed. In contrast, mixed

shifts in θ , but with a dominant reduction trend, are ob-

served in heavily thinned areas, with VS40 producing

the largest reduction rates. Regarding ET, except for a

few increasing trends in heavily thinned transects with

slightly higher surface temperature (Temp), the vast ma-

jority of the thinned area indicates decreases on ET as-

sociated with reductions in transpiration rates (T). Be-

cause impervious cases (i.e., VS40) impose increases

in surface runoff production to the river network, both

θ and ET decrease more drastically in this case. For-

est thinning consistently reduces snow persistence and

peak values in intensively thinned areas.

5. Multiple element soil column analysis indicates that

gains in runoff and aquifer recharge are due to net re-

ductions in interception, snow water equivalent and,

less likely through reductions in evapotranspiration. Re-

moval of forest canopy shading creates a nearly bal-

anced mechanism where decreases in transpiration are

compensated by increases in soil evaporation rates.

The annual net radiation imbalance between north- and

south-facing slopes in this north-latitudinal basin re-

sults in increased vulnerability of south-facing areas to

less snow accumulation and faster melt periods by in-

creases in surface temperature, sublimation and evapo-

ration rates.

Despite this modeling study not considering the recovery of

vegetation dynamics (e.g. re-growth) and soil hydraulic prop-

erties during the long-term simulations, the use of highly

credible (Hampton et al., 2011) forest thinning projections

and three additional simulation scenarios considering in-

creases in soil imperviousness provide one set of reasonable,

spatially distributed cases to identify potential effects on the

mean and extreme hydrologic conditions in this semi-arid re-

gion. This situation could, specially, apply if authorities de-

cide to maintain forest thinning operations in the long term.

The results of this study are based on the use of a distributed

hydrologic model that was calibrated and verified during 20

consecutive years at daily scale, using 12.5 km, 1 h resolu-

tion climate forcing from the NASA Land Cover Data As-

similation System (NLDAS; Mitchell et al., 2004) with pre-

cipitation fields locally adjusted through rain gauge data. The

tuning and evaluation procedures both provided appropriate

skill scores for streamflows and snow water equivalent, de-

spite some discrepancies introduced by model forcing, initial

conditions and structural errors. While calibration and val-

idation coefficients are not optimal, model performance of-
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fers the possibility of quantifying changes introduced by for-

est thinning, independent of the model structural and para-

metric uncertainty, as results are primarily presented relative

to model simulations made with 2006 vegetation conditions,

which we adopted as current reference case.
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Appendix A: Precipitation bias correction

While a global bias correction procedure (Steiner et al.,

1999) provided poor rainfall adjustments, a modified local

correction strategy (Seo and Breidenbach, 2002) produced

much better hourly rainfall estimates due to the high spatial

variability of this phenomenon. This approach uses the three

closest daily ground rain gauges to correct hourly volumes of

the NLDAS gridded precipitation product (R) pixels follow-

ing a weighting strategy according to the following expres-

sions:

rc = ro

3∑
i=1

wiβi +

3∑
i=1

wiδi, (A1)

where

βi =
1 if gi /ri > βt
gi /ri if gi /ri < βt ,

(A2)

δi =
(gi − ri)/24 if gi /ri > βt
0 if gi /ri < βt ,

(A3)

rc is bias-corrected R (mm), ro is raw R at the pixel centered

at µo (mm), wi is weight given to the R-gauge pair at the ith

vertex in the triangle of R-gauge pairs that encloses µo, βi
is multiplicative sample bias from the ith R-gauge pair, δi is

additive sample bias from the ith R-gauge pair, gi is gauge

rainfall measurement (mm) at the ith vertex in the enclosing

triangle, ri is collocating R rainfall estimate (mm) at the ith

vertex in the enclosing triangle and βt is adaptable parameter

that denotes the threshold for the multiplicative or additive

bias.

The neighboring R-gauge pairs are identified by triangula-

tion, which connects all available R-gauge pairs into a mesh

of triangles. The weights, wi , i = 1,2,3, sum to unity and

are inversely proportional to the distance to the neighboring

R-gauge pairs in the enclosing triangle. An iterative proce-

dure was conducted to select the best βt=1 that minimized

the MSE between observed and corrected rainfall at rain

gauge locations. Figure A1 illustrates the spatial distribu-

tion of precipitation for the VTS system, averaged during 21

years (1990 to 2010) as measured by (a) Thiessen polygons

derived from 30 daily rain gauges, (b) raw NLDAS and (c)

bias-corrected NLDAS estimations. Figure A2 shows an ex-

ample scatter plot comparing daily rain gauge values (x axis)

with raw and corrected NLDAS (y axis) for 1 of the 30 sta-

tions within the study region.
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Figure A1. Spatial distribution of long-term (1990–2010) annual rainfall as measured by (a) Thiessen polygons from 30 daily rain gauge

stations, (b) raw NLDAS and (c) locally bias corrected NLDAS estimations.

Figure A2. Scatter plot of daily rainfall depths between (a) the raw

NLDAS product and gauge rainfall and (b) the bias corrected NL-

DAS product and the gauge rainfall for an example rainfall station

(ID 00023448) and collocated NLDAS pixel.

Hydrol. Earth Syst. Sci., 20, 1241–1267, 2016 www.hydrol-earth-syst-sci.net/20/1241/2016/



H. A. Moreno et al.: Hydrologic effects of forest thinning 1263

Appendix B: Model vegetation relations

A set of empirical relations are used to relate remote sensing

and field information to vegetation parameters and processes

in our hydrologic model. Such processes account for vege-

tated fraction (VF), LAI, throughfall (p), and canopy storage

(S) and below canopy light (Q/Q0) and wind speed attenu-

ation (Uh), in ponderosa pine forests.

From historical measurements in northern Arizona across

seven different ponderosa pine forest densities, 90 m resolu-

tion vegetation fraction maps were derived for pre- and post-

treatment basal area conditions only (i.e. ignoring plant evo-

lution or phenology), as reported by the small-diameter wood

supply report (Hampton et al., 2011) with the following ex-

pression:

VF=
BA+ 2.794

2.898
; R2

= 0.99, (B1)

where VF is the vegetation fraction (%) and BA is the mea-

sured basal area (ft2 /Ac). LAI maps for ponderosa pine

were derived following an empirical relation with basal area

from field measurements in 10 study sites with different pine

densities (Armstrong, 2012) through a relation that mini-

mized residuals between observed and predicted LAI:

LAI=

{
0 if BA= 0

Abs(−0.00003738369BA2
+ 0.01683112155BA

− 0.03539819521) if BA> 0
. (B2)

LAI values were verified on typical ranges for ponderosa

pine forests under different vegetation fraction conditions.

Vegetation fraction and LAI values for non-ponderosa cov-

ered areas were extracted from the 2006 Landfire prod-

ucts (http://landfire.gov/) and derived from existing literature

(Mendez-Barroso et al., 2013; Mitchell et al., 2004), respec-

tively. Free throughfall coefficient (p), which accounts for

the fraction of rainfall not captured by plants, and canopy

capacity (S), were derived from the expressions B3 and

B4 (Carlyle-Moses and Price, 2007; Mendez-Barroso et al.,

2013; Pitman, 1989):

p = exp(−1.5 LAI), (B3)

S = 0.5 LAI. (B4)

The Beer–Lambert law was adopted to account for the reduc-

tion in radiative transmittance due to dense canopies (Brant-

ley and Young, 2007; Marshall and Waring, 1986) following

Q

Q0

= exp((Kt − 1)LAI), (B5)

where Kt is the optical transmission coefficient. Finally, be-

low canopy momentum transfer by wind speed was corrected

by forest density as surface rugosity factor following (Sypka

and Starzak, 2013; Yi, 2008)

U(h)= UH exp

{
−

1

2
LAI

(
1−

h

Hc

)}
. (B6)

Where U (h) is the wind speed at the height h within the

canopy, in m s−1, UH is the wind speed at the top of the

canopy, in m s−1, and Hc is the top of the canopy, in m.
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