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A B S T R A C T   

One of the major uncertainties in dispersion-based simulations at the local scale is the representation of terrain 
effects. The aim of the current study is to quantify this type of uncertainty for dose-rate predictions over a ho-
mogeneous forest cover. At the Belgian reactor BR1, situated in a forested environment, ambient gamma-dose- 
rate data from routine Ar-41 releases are available in the first 300 m from the release point. We develop a forest 
parameterization that meets the site-specific needs, and integrate it in different dispersion models. Using 
different terrain-roughness parameterizations, we compare three types of models: a dispersion model driven by a 
Langevin equation, an advection-diffusion model, and a Gaussian plume model as a special case of the latter one. 
We find that all models are biased up to a factor of four, partly due to an uncertain source strength. The dose-rate 
uncertainty due to the model choice is a factor of 2.2 for a stack release and a factor of 14 for a ground release.   

1. Introduction 

Atmospheric dispersion models (ADM) describe the transfer of pol-
lutants under given meteorological conditions and release characteris-
tics. Such models are an indispensable tool for conducting qualitative 
impact assessments of nuclear facilities. In such assessments, both the 
effects of releases under normal operation and in case of an emergency 
situation on public health are examined. A particularly interesting 
application of dispersion modeling is ambient dose-rate estimation. 
Since dose rates are easy to measure, they are usually the first available 
measurements in case of a nuclear accident. Nuclear facilities are often 
marked by a complex terrain structure consisting of buildings, water 
surfaces and various vegetation types. Several ADM exist, ranging from 
simple Gaussian models to highly complex Computational Fluid Dy-
namics (CFD) models. Model selection depends on a compromise that 
has to be made between accuracy and the time that is required to set up 
cases and perform calculations. Gaussian models are widely used 
because of their simplicity, but they are presumed to fail in the first 
kilometer around the source due to complex terrain configurations 
(Leelőssy et al., 2018). 

Empirical laws are elementary building blocks to model effects of 

terrain roughness. However, studies that discuss the sensitivity of 
incorporating terrain effects into simulated dose rates remain few (Oza 
et al., 1999; Raza et al., 2001; Srinivas et al., 2009). None of these 
studies investigated the influence of the terrain cover parameterization 
on simulated dose rates. In the current study, we investigate the 
modeling of terrain roughness in dispersion simulations and dose-rate 
predictions in a forested area that is horizontally homogeneous. To 
this end, we set up a suite of models, that differ in the amount of detail 
with which the forest cover is represented, but also differ in the type of 
dispersion parametrization. This includes a Gaussian plume model with 
two open-field parameterizations (low and high terrain roughness), and 
two different Lagrangian particle models (both with open-field and 
forest parametrization). The Gaussian plume model simply uses 
increased surface roughness to parametrize forest, following the stan-
dard approach for these models. For both other models, we develop a 
more detailed canopy parametrization. This describes the wind field and 
the dispersion process above and inside the canopy, hereby taking a 
non-uniform leaf distribution over height and the sparsity of the vege-
tation cover into account. All the models are harmonized, i.e., the 
Gaussian and Lagrangian models have each a similar implementation, 
the parameterization of the Lagrangian models is such that they 
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reproduce the same internal variability, and the dose rates are calculated 
in the same way. 

As a point of reference, an ambient dose-rate dataset is available for 
the SCK CEN site (see Fig. 1), situated in a forest environment, by means 
of the TELERAD early warning stations (Sonck et al., 2010). On this site, 
increased dose rate levels are picked up regularly due to Ar-41 stack 
releases during the routine operation of the Belgian Reactor 1 (BR1). The 
data spans 16 days in the first half of 2017 with 25 consecutive 10-min 
periods per day. In-situ weather data from a met (meteorological) mast 
are also available. We reproduce this dataset with our different simu-
lation models, and evaluate performance using the measures proposed 
by Chang and Hanna (2004). Although not available in the dataset, we 
also perform a model comparison for a hypothetical ground-release 
scenario for the same meteorological data series. 

In section 2, an extensive description of the models is given. In sec-
tion 3, the simulation results are presented. This section also contains a 
validation and a sensitivity study of the canopy model. The validation 
study addresses the capabilities of the canopy model to describe the 
atmospheric properties of the vegetation canopy. In section 4 a discus-
sion of the results can be found. Finally, section 5 concludes the paper. 

2. Methodology 

In order to simulate the dose rate resulting from the dispersion of 
radioactive pollutants, a pollutant dispersion model is necessary that 
provides the pollutant concentration c(t, x) (cf. further below for 
details.) 

Given the concentration field, and a detector/observer at location 
x′

∈ R3, the dose rate ḋγ [Gy/s] due to the gamma energy released per 
disintegration Eγ [MeV] can be calculated as (Thykier-Nielsen et al., 
1995, 1999) 

ḋγ(t, x
′

) =
KcμenEγ

4π

∫

R3

B(μr(x))
r(x)2 e− μr(x)c(t, x)dx (2.1)  

with Kc = 1.6 × 10− 13 Gy kg/MeV a unit conversion factor, μen the en-
ergy absorption coefficient for air [m2/kg], B the buildup factor, μ the 
linear attenuation coefficient in air [m-1] and r(x) the Euclidean distance 
[m] from x ∈ R3 to x′ . More information about the application of the 
dose rate model and its parameter values can be found in Kenis et al. 
(2013). 

2.1. Dispersion modeling 

In the following, we assume that the released gas does not deposit. In 
particular, the formulation is not valid for the release of polydisperse 
particulates, but this type of releases are not considered in the current 
work. A classical approach to model dispersion of radioactive pollutants 

is to solve an advection-diffusion equation 

∂c
∂t

+∇ ⋅ (uc)=∇ ⋅ (K∇c) − λc + S (2.2)  

with c the concentration field [Bq/m3], u = (u, v,w) the mean wind 
speed vector [m/s], λ the radioactive decay constant [s-1], K(x) =
diag(Kx(x),Ky(x),Kz(x)) ∈ R3×3 the eddy diffusivity tensor [m2/s] and S 
the source term [Bq/(m3s)]. In the current work, we will consider steady 
point releases, so that S(x) = Qδ(x − x0), with x0 the source location. 
Moreover, λ = 0s− 1 is used, since we will only study the near-field range, 
for which decay can be neglected. 

The main disadvantage of using (2.2) to solve for the concentration 
field is that the Boussinesq approximation (i.e. − 〈u′c′ 〉 = K∇c, where 
the prime denotes the turbulent component of the respective field and 
the operator 〈 ⋅〉 is the time average over a sufficiently long time span 
such that 〈u′ 〉 = 〈c′ 〉 = 0) underestimates the turbulent diffusivity, and 
it is not valid close to the source (e.g., see De Visscher, 2013, §5.11.5 
p.117). This is also shown by Taylor’s statistical turbulence theory [44]. 
According to this theory, the standard deviation of the position of 
pollutant particles is proportional to the travel time close to the source. 
Only after a sufficiently long travel time, it becomes proportional to the 
square root of travel time, as consistent to, e.g., molecular dispersion 
and the Boussinesq approximation. 

In order to incorporate Taylor’s theory, a Lagrangian modeling 
framework has to be used. We first start by introducing a Lagrangian 
modeling framework that is equivalent to solving (2.2). Let the sto-
chastic process (Xt)t>0 describe a Lagrangian particle trajectory, and 
consider following stochastic differential equation to generate such 
trajectories 

dXt =
(
u(Xt)+u′

p
)
dt, t > 0, (2.3)  

with u′
p the particle velocity noise vector [m/s] (see below), and u(x) the 

background mean wind field. If we select 

u′
pdt=∇ ⋅ K(Xt)dt +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2K(Xt)

√
dWt (2.4)  

with (Wt)t>0 the three-dimensional Wiener process, and we consider p(t,
x|t′ , x′

) the transition probability density function of the stochastic pro-
cess (Gardiner, 1985), i.e. the probability that a particle is situated in an 
infinitesimal volume dx around location x at time t given an earlier 
position (t′ ,x′

), with t′ ≤ t, then it can be shown that (Lamb, 1984) 

c(t, x)=Q
∫ t

0
p(t, x|τ, x0)dτ (2.5)  

corresponds to the solution of (2.2) (see, e.g., Tubex, 2018). 
In order to set up a Lagrangian framework that is consistent with 

Fig. 1. The SCK CEN site, including the TELERAD monitoring stations (red marks), the chimney (or stack) and the met mast; image from Google Earth ©2017 Google. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Taylor’s theory, we use following Langevin equation for the k-th 
component of u′

p (k = 1,2, 3) (Legg and Raupach, 1982) 

d
[
u′

p
]

k = −

[
u′

p
]

k

[τL]k
dt +

∂σ2
w

∂z
dtδk3 +

(
2

[τL]k

)1/2

[σu]kd[Wt]k (2.6)  

with τL ∈ R3 the Lagrangian time scale vector [s], σu = (σu, σv, σw) ∈ R3 

the variance vector [m/s] of the particle velocity and δij the Kronecker 
delta. Here, the operator [⋅]k returns the k-th component of the input 
vector. 

Prior to solving (2.3), and (2.4) or (2.6), u, K, σu and τL need to be 
determined. This requires a parametrization of the atmospheric condi-
tions. In the current work, we presume homogeneous forested terrain, 
and therefore, we presume that profiles of velocity, turbulence in-
tensities, etc. only depend on the vertical direction, viz. u(x) = u(z)ê 
with ̂e ∈ R3 the unit vector pointing along the horizontal wind direction 
and u(z) the velocity magnitude [m/s] at height z (see §2.2) for any point 
x ∈ R3. Depending on possible further assumptions that we make, we 
arrive at four classes of models (an overview is given in Table 1), of 
which we will consider three in the current work. First of all, either using 
the Boussinesq hypothesis or Taylor’s turbulence theory with a param-
etrization of the vertical profiles of velocity etc. leads to two models that 
we consider. However, often dispersion models are even more simplified 
by presuming also vertical homogeneity. In combination with the 
Boussinesq hypothesis, this allows to formulate an analytical solution to 
Eq. (2.2), leading to the well-known Gaussian plume model. Since this is 
a model that is widely used in dispersion studies, we include it here as 
well as a point of reference. 

The aim of the current work is to evaluate the importance of a proper 
forest parametrization for dispersion simulations in homogeneous 
forested areas. To this end, we will use the Lagrangian models both with 
(i) an open-field parametrization and (ii) a forest parametrization. For 
the Lagrangian models, we construct terrain roughness models that 
provide vertical profiles of micro-meteorological conditions (see §2.2). If 
the open field or forest parameterization is substituted into Eq. (2.3), 
then the resulting model will be referred to as the OF (Open Field) or F 
(Forest) model respectively. In case the OF model is used, we employ a 
high terrain roughness that is representative of the total forest rough-
ness. The Gaussian (G) plume models have been calibrated to tracer 
experiments or meteorological data (see §2.1.2 and §4). The terrain 
roughness for the Gaussian models is an intrinsic property of the scheme 
for the dispersion parameters and thus, it cannot be modified. We use 
two parameterizations i.e. the Pasquill–Gifford (PM) and the Bul-
tynck–Malet (BM) scheme. In total, the different models and parame-
terizations lead to six different simulation models, as summarized in 
Table 2. 

2.1.1. Lagrangian models: discretization 
For the discretization of Eqs. (2.3), (2.4) and (2.6), we use the 

explicit Euler–Maruyama scheme. Given the initial condition X0 = X0, 
the discretized scheme is as follows for n ≥ 0: 

Xn+1 − Xn =
(

u(Xn)+ u′n
p

)
Δt, (2.7)  

u′n
pΔt=∇ ⋅ K(Xn)Δt +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2K(Xn)

√
ΔWn+1, (2.8)  

[
u′ n+1

p

]

k
=

(

1 −
Δt

[τL(Xn)]k

)[
u′n

p

]

k
+

∂σ2
w

∂z
(Xn)Δtδk,3

+

(
2

[τL(Xn)]k

)1/2

[σu(Xn)]kΔ
[
Wn+1

t

]

k, (2.9)  

in which the superscript n refers to the value at the n-th time step and the 
increment Δ[Wn+1]k is drawn from a normal distribution. For scheme 
(2.7,2.9), we assume u′0

p to be the zero vector. Either combining (2.7) 
with (2.8), or (2.7) with (2.9), results in the discretization for the LB and 
LT models respectively. 

The LT model (2.7,2.9) requires Δt ≤ 2mink[τL]k for the scheme to 
remain stable. For an accurate convergence, however, Δt < mink[τL]k is 
highly recommended. The LB model (2.7,2.8) has no stability re-
strictions. From a physical perspective, this model presumes u′

p to be 
uncorrelated in successive time steps. This would require 
Δt > maxk[τL]k, but this condition is not enforced in practice in the 
current work, as it would lead to particles that are spread out too thin in 
the domain of interest. 

Model (2.7,2.9) differs fundamentally from (2.7,2.8) because it in-
corporates the inertia effect to which the pollutant particles are sub-
jected. This effect is modeled by means of the air parcel’s velocity 
autocorrelation that the particle is initially following. Model (2.7,2.8) 
does not take this inertia effect into account. The internally generated 
variance after one time step from both models, however, can be set 
equal. Denote σ2,n

k = Var([u′n
p ]k(

⃒
⃒Xn− 1)), and assume τL(Xn) = τL(X0) and 

σu(Xn) = σu(X0). One can prove by induction from Eq. (2.9) the 
following identity 

σ2,n
k = σ2,0

k

(

1 −
Δt

[
τL
(
X0)]

k

)2n

+
2Δt

[
τL
(
X0)]

k

[
σu
(
X0)]2

k

∑n− 1

l=0

(

1 −
Δt

[
τL
(
X0)]

k

)2l

.

Choose T ∈ R+
0 randomly, but fixed and set Δt = T/m with m ∈ N0 

sufficiently large such that Δt < [τL(X0)]k, then 

σ2
k(T) : = lim

m→∞
σ2,m

k = σ2,0
k e− 2T/[τL(X0)]k +

[
σu
(
X0)]2

k

(
1 − e− 2T/[τL(X0)]k

)
.

(2.10) 

The same expression was also derived in Legg and Raupach (1982). 
Assume that after n time steps, the values u′n

p and Xn are obtained from 
Eqs. (2.7,2.9), consequently σ2,n

k = 0 at the next time step and apply 
(2.10) with T = Δt, i.e., 

σ2,n+1
k = [σu(Xn)]

2
k

(
1 − e− 2Δt/[τL(Xn)]k

)
. (2.11) 

It can be readily seen that σ2,n+1
k = 2K(Xn)/Δt in case of (2.7,2.8). 

Setting this expression equal to (2.11) yields 

Kk,k(Xn)=
[σu(Xn)]

2
k

2
Δt

(
1 − e− 2Δt/[τL(Xn)]k

)
. (2.12) 

We will assume this form for the main diagonal elements of K to 
match the internally generated variability of both models for 
Δt < mink[τL]k. Consequently, possible simulation differences are not 
attributed to differences in variability. 

Finally, the discretization of (2.1) is highly elaborated. Denote f :
R3→R an integrable function, then the expectation value w.r.t. (Xt)t>0 
generated by (2.3,2.4) or (2.3,2.6) is given by 

E[f (Xt− s)] =

∫

R3
f (x)p(t, x|s, x0)dx, s< t, s ≥ 0, (2.13)  

with p the corresponding probability density function. Substituting (2.5) 
in (2.1), switching the order of integration and applying (2.13) at time 

Table 1 
Four possible model classes following from using the Boussinesq hypothesis or 
Taylor’s turbulence theory, and from either assuming vertical homogeneity or 
not.   

Boussinesq hypothesis Taylor’s turbulence 
theory 

Vertically homogeneous Gaussian plume model (see 
§2.1.2) 

– 

Vertically non- 
homogeneous 

Eqs. (2.3) & (2.4) Eqs. (2.3) & (2.6)  
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t = tn := nΔt yields 

ḋγ(tn, x
′

) =
QKcμenEγ

4π

∫ tn

0
E

[
B(μr(Xtn − s))

r(Xtn − s)
2 e− μr(Xtn − s)

]

ds.

Now, approximating the expectation value E[ ⋅] by the arithmetic 
average and discretizing the integral over time results in the 
approximation 

ḋγ(tn, x
′

) ≈
QKcμenEγ

4πNp

∑n

i=1

∑Np

j=1

B
(

μr
(

Xn− i
j

))

r
(

Xn− i
j

)2 e− μr(Xn− i
j )Δti (2.14)  

with Xn− i
j the location at the n-th time step of the j-th particle released at 

the i-th time step and Np the number of particles released per time step. 
Notice that Δti is the employed time step at the moment of release of the 
corresponding particle. 

2.1.2. Gaussian plume model 
Equation (2.2) has a well-known analytical solution for the setting of 

a homogeneous, stationary turbulence field. This assumption reduces 
the complexity of (2.2) greatly since it implies a uniform velocity over 
space. Given additional assumptions on the dispersion coefficient and 
boundary conditions, among others, following analytical solution can be 

derived (Stockie, 2011)  

with σy and σz the dispersion parameters [m], he the emission height 
[m], and ue the wind speed [m/s] at height he. The following expressions 
relate the dispersion parameters to the eddy diffusivities (Stockie, 2011) 

1
2

dσ2
y

dx
= u− 1

e

∫ x

0
Ky(ξ)dξ,

1
2

dσ2
z

dx
= u− 1

e

∫ x

0
Kz(ξ)dξ, (2.15)  

with x the downwind distance [m). The literature provides several 
parameterization schemes, but in this paper we use the Pasquill–Gifford 
(Zannetti, 1990) (PG in Table 2), and the in-house scheme by Bultynck 
and Malet (1972) (BM in Table 2). 

The Pasquill–Gifford scheme was derived from a tracer experiment in 
which ground releases took place in a low-roughness open field, and is 
used here for the G–PG simulation. The in-house scheme was calibrated 
to data from the met mast at the SCK CEN site to represent the different 
atmospheric conditions occurring at the site. Then, the obtained scheme 
was validated with tracer experiments. During these experiments, stack 
releases (60 m) took place in rough terrain, i.e. the SCK CEN site (Bul-
tynck and Malet, 1972), and these terrain characteristics are used in the 
G–BM formulation. The Pasquill–Gifford and in-house schemes were 
originally derived for averaging times of 3 min and 1 h respectively. In 
this study, these schemes are used to simulate an averaging time of 10 
min. 

For the Pasquill–Gifford scheme ue is estimated using Mon-
in–Obhukov similarity theory (see also §2.2) with z0 = 0.03m (low 
roughness ,Wieringa, 1992). For the in-house scheme, a power-law fit 
u(z) = uref [z/zref ]

α is used, with values for α provided in Table 3. It is 
important to emphasize that the stability class is a parameter in both 
schemes, but not the terrain roughness. The latter one is an intrinsic 
property of the scheme. 

2.2. Atmospheric parameterization 

Both (2.8) and (2.9) require profiles of vertical velocity, and turbu-
lence statistics for different atmospheric conditions. Input is typically a 
measurement of wind speed, direction, and temperature at a reference 
height, obtained from a met mast. The terrain parameterizations are 
matched to these local measurements to represent the local micro- 
meteorological conditions. In the current work, we assume a reference 
measurement well above the forest canopy. Thus, the canopy parame-
terization extrapolates the meteorological conditions from above to in-
side the canopy. Moreover, we compare such a canopy model to a more 
conventional open-field model based on Monin–Obhukov similarity 
theory (see §2.2.1), using a high terrain roughness to represent the 
forest. 

2.2.1. Open-field parametrization 
The simplest way to represent a forest in the inhomogeneous tur-

bulence case is by modeling it as an open field with high-terrain 
roughness. The Eulerian wind profile can be directly obtained from 
Monin–Obukhov similarity theory (MOST) (e.g. ,Arya, 2001), i.e., 

u(z; u∗, L)=
u∗

κ

(

ln
(

z
z0

)

− ΨM(z /L)+ΨM(z0 / L)
)

(2.16)  

with u∗ the friction velocity [m/s], κ = 0.4 the Von Kármán constant [-], 
z0 the roughness length [m], L the Monin-Obukhov length [m] and ΨM 
the integrated stability kernel. The virtual potential temperature [K] has 
a similar expression as (2.16), i.e., (Arya, 2001) 

θv(z; θ∗,L) − θv,0 =
θ∗

κ

(

ln
(

z
z0,H

)

− ΨH(z / L)+ΨH
(
z0,H

/
L
)
)

(2.17)  

with θv,0 the virtual potential temperature at height z0,H [m], and θ∗ the 
temperature scale [K]. The stability functions from Dyer (1974) are 
used. The expressions for the integrated forms are given by (A.10-A.11) 
(e.g., see De Ridder, 2010). 

The virtual potential temperature is simply related to temperature 
and humidity using the standard definitions (Holton, 2004), 

θv(z)=Tv(z)
(

p0

p(z)

)R/cp

, R= 287 J
/
(kg K), cp = 1004J

/
(kg K),

(2.18) 

Table 2 
Overview of the different models and terrain parametrizations considered in the 
current study, including acronyms used in the text.   

Imposed 
roughness 

Gaussian 
plume 

Lagrangian+

Boussinesq  
Lagrangian +
Taylor  

Open 
field 

low G–PG – – 
high G–BM LB–OF LT–OF 

Forest high – LB–F LT–F  

Table 3 
Values of the exponent α for each stability class (Kretzschmar et al., 1984) as 
used in the in-house scheme.   

stable slightly 
stable 

neutral slightly 
unstable 

unstable very 
unstable 

α 0.53 0.40 0.33 0.23 0.16 0.10  

c(x, y, z)=
Q

2πueσyσz
exp

{

−
1
2

(
y
σy

)2}(

exp
{

−
1
2

(
z − he

σz

)2}

+ exp
{

−
1
2

(
z + he

σz

)2})
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Tv(z)=T(z)
1+rv(T(z))/0.622

1+rv(T(z))
, rv(z)=

0.622ev(T(z))
p(z)− ev(T(z))

, ev(z)=RH(z)es(T(z)),

(2.19)  

presuming hydrostatic equilibrium for the pressure (dp/ dz = − ρg, 
using a density ρ = 1.225 kg/m3, gravitational acceleration g = 9.81 m/ 
s2 and pressure at sea level p0 = 101300 Pa), and with T the ambient 
temperature [K], rv [ − ] the mixing ratio, ev [Pa] the vapor pressure, RH 
[ − ] the relative humidity, and es [Pa] the saturation vapor pressure over 
water. The parameter es is calculated here using the Buck equation 
(A.15) (Buck, 1981). 

Given measurements of velocity uref at height zref , virtual potential 
temperatures θref at height zref and θv,0 at height z0,H, i.e., 

u
(
zref ; u∗, L

)
= uref , θv

(

zref ; θ∗, L
)

− θv,0 =Δθv,ref , L=
u2
∗θv,0

κgθ∗

. (2.20) 

We obtain a closed system of three equations that can be used to 
obtain L, u∗, and θ∗, as well as the height-dependent profiles. This 
profile-fixing strategy is the so-called profile method (Holtslag, 1984). 

Apart from velocity profiles, also turbulence statistics are required. 
For Eq. (2.4), the same profiles for σu, σv, σw, and [τL]k (k= 1, 2,3) are 
used in the expression for K (2.12) as for Eq. (2.6). To this end, we 
presume that measured statistics of wind direction at reference height 

are available, i.e. the standard deviations σazi [
◦
] and σelev [

◦
] of azimuth 

and elevation angles respectively. Using w ≈ 0 m/s, and presuming 
small angles, we then find 

σv,r ≈ urefσazi
π

180∘, σw,r ≈ urefσelev
π

180∘. (2.21) 

In the surface layer, the variance of the horizontal wind components 
can be assumed to be independent of height for every stratification 
regime (e.g., see Stull, 1988; Hunt, 1984; Caughey, 1984), so that 
σv(z) = σv,r. The velocity variation along the wind direction, is param-
eterized as (Stull, 1988; Hanna, 1984)   

The variance of the vertical wind component is also height inde-
pendent, except in an unstable atmosphere. According to local free 
convection similarity theory σw(z) = σw,r(z/zref)

1/3 (e.g., Arya, 2001). 
The Lagrangian time scale τL is considered to be a three-dimensional 

vector; a parameterization for each component can be found in Hanna 
(1984) i.e. 

[τL]1 = [τL]2 = [τL]3 =
0.5z/σw

1 + 15fCz/u∗

, |L| ≥ 200m, (2.23)  

τL =

(
0.15
σu

,
0.07
σv

,
0.1
σw

)
̅̅̅̅̅̅̅̅̅̅̅
hABLz

√
, 0m < L< 200m, (2.24)  

[τL]1 = [τL]2 = 0.15
hABL

σu
, − 200m < L < 0m, (2.25)  

[τL]3 =
0.1z

σw[0.55 − 0.38(z − z0)/L ]
, − 200m < L < 0m and z

< 0.1hABL and z − z0 < − L, (2.26)  

[τL]3 = 0.59z
/

σw, − 200m < L < 0m and z < 0.1hABL and z − z0 > − L,
(2.27)  

[τL]3 = 0.15
hABL

σw

[

1 − exp
(
− 5z

h

)]

, − 200m< L< 0m and z> 0.1hABL.

(2.28) 

The expression for τL in stable and unstable conditions requires the 
height of the boundary layer, hABL, as an input. In case of a stable at-
mosphere, the height is estimated as hABL = 0.25

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u∗L/fC

√

(0m< L< 200m) (Hanna, 1984) with fC the Coriolis parameter. For 
unstable conditions ( − 200m< L< 0m): 

hABL =

{
2|L|

(
[σv/u∗]

3
− 12

)
, − 200m < L < − 100m and (σv/u∗)

3
> 12

θv,0(σv/0.6)3
/
(− u∗θ∗g) , otherwise 

The second equation is a good approximation in very unstable con-
ditions (Caughey, 1984) (typically − 100m < L < 0m), but we use it for 
a wider range of unstable conditions (− 200m < L < − 100m when 
(σv/u∗)

3
≤ 12), as we did not find a better option. 

2.2.2. Vegetation canopy dispersion model 
In the current section, we introduce a new forest canopy model by 

combining elements from De Ridder (2010), Mihailović et al. (1999) and 
Yi (2008). These models are consistent with the classical log law higher 
up above the forest, take the sparsity of the forest into account, and 

provide an analytical solution for a general leaf-area-density profile, 
respectively. The only forest characteristics that are assumed to be given 
are tree height (h), canopy depth (Δhc), stand density (ρS), Leaf Area 
Index (LAI), Diameter at Breast Height (DBH), the extinction coefficient 
(γext), the drag coefficient (Cd) and the roughness length of the forest soil 
(z0,s). In particular, presuming a horizontally homogeneous forest cover, 
and a number of additional simplifying assumptions, we arrive at an 
analytical expression for u(z), velocity variances, etc. The model consists 
of an above-canopy model that is matched to an inside-canopy model, 
which relies on the description of the leaf-area-density. The underlying 
idea is sketched in Fig. 2. These elements are now successively 
discussed. 

2.2.2.1. Leaf-area density. The forest canopy model developed below, 
builds on an available Leaf Area Density (LAD) profile. This study re-
stricts itself to a vegetation canopy with an irregular leaf distribution, 
mainly present in the upper part of the canopy. Since LAD models in the 
literature are rather scarce, the model from Porté et al. (2000) for the 
Pinus pinaster is used, for which the LAD [m-1] is given by 

LAD(y)= a1⋅ya2 ⋅(a4 − y)a3 (0≤ y≤ a4), y(z) =
z − hc

h − hc
(hc ≤ z≤ h), (2.29)  

a1 =
LAI(a2 + 1)

2F1(a2 + 1, − a3; a2 + 2; a− 1
4 )(h − hc)

, a2 = 4.192, a3 = 1.9264, a4 ≈ 1,

(2.30)  

with h the tree height [m] and hc = h − Δhc the height of the bottom of 
the tree crown [m], LAI the Leaf Area Index [-] and 2F1 the hypergeo-
metric function. The values of a2, a3 and a4 correspond with a mature 
stand that has 2 year-old needles (Porté et al., 2000). 

The leaf-area density can be used to characterize the displacement 
height d of the forest canopy [m], i.e., 

d =
ηαd

η(α − 1) + 1
, d = argzmax(LAD(z)), (2.31) 

σu = 1.2σv,r (|L|> 200m), σu = 1.5σv,r (0m< L< 200m), σu = σv,r ( − 200m<L< 0m). (2.22)   
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where d is the dense-canopy estimate [m], based on Thom (1971), and 
d is corrected for the sparsity of the forest (Mihailović et al., 1999). A 
formula for α and η is given by (A.19); a justification can be found at the 
end of the next section (‘Above-canopy model’). 

2.2.2.2. Above-canopy model. The above-canopy wind profile can be 
modeled by means of a similarity scaling argument. It is a known fact 
that a forest can influence the flow up to five times its own height 
(Raupach et al., 1991). The perturbed layer is referred to as the rough-
ness sublayer and its effect needs to be incorporated. To that end, the 
similarity scaling formulation from Physick–Garratt with the 
roughness-sublayer correction from De Ridder (2010) is used. Alterna-
tive models can be found in Mihailović et al. (1999), but the drawback is 
that their gradient does not converge to the one of the classical log law 
for z≫h. 

Take u∗ the friction velocity at the canopy top, and z∗ thickness of the 
roughness sublayer [m], then the wind speed above the canopy is 
described by (De Ridder, 2010) 

du
dZ

(Z; u∗, μM ,L) =
u∗

κZ
ΦM(Z/L)φM(Z/Z∗; μM), Z := z − d, z > z0 + d,

(2.32)  

with d the displacement height (see Eq. 2.31), ΦM the stability kernel 

function from Dyer (1974) (as in section §2.2.1), φM(x; μM) = 1 − exp{ −
μMx} the roughness-sublayer kernel function for momentum, z0 =

0.071h the roughness length (Mölder and Lindroth, 1999) and Z∗ = 2h −

d for a pine forest (Mölder et al., 1999). 
Integrating Eq. (2.32) from z0 to Z leads to the following expression 

for the wind speed   

Ψ∗
M

(
Z
L,

Z∗

L ; μM

)

=
∫∞

Z
ΦM (z′ /L)

z′ e− μM z′ /z∗dz′

≈ ΦM

[(

1+
1

2μM

Z∗

Z

)
Z
L

]
2
3

ln
(

1+
3
2

Z∗

μMZ

)

exp(− μMZ / Z∗),

(2.34)  

where ΨM is the integrated form of the kernel function ΦM, see (A.10- 
A.11). 

A similar reasoning can be applied to the temperature profiles; the 
friction velocity is replaced by the temperature scale θ∗, the roughness 
length z0 by z0,H such that z0,H + d is the height at which the ground 
temperature is measured and the kernel function for heat should be used 
in stead of the one for momentum, hereafter denoted by the subscript H 
instead of M. The unknown parameters are the friction velocity u∗, the 
temperature scale θ∗, the Monin-Obukhov length L and the empirical 
parameters μM and μH introduced by De Ridder (2010). 

The model of De Ridder requires two emperical parameters μM and 

Fig. 2. Construction of the canopy parameterization; De Ridder (- -) is matched to a wind measurement uref above height h and uh at h, continuity is imposed in the 
gradient and value predictions from De Ridder and Yi (− ) at h. The green shading represents the LAD. The right figure displays the graph of the function given by Eq. 
(2.37). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

u(Z; u∗, μM ,L)=
u∗

κ

(

ln
(

Z
z0

)

− ΨM(Z / L)

+ΨM(z0 / L)+Ψ∗
M

(
Z
L
,

Z
Z∗

; μM

)

− Ψ∗
M

(
z0

L
,

z0

Z∗

; μM

))

,
(2.33)   
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μH. Average values can be found in De Ridder (2010) for the considered 
type of forest. However, the opinion of the authors of the current work is 
that these values don’t work well for every type of forest. Therefore, we 
propose to estimate these parameters as well from the meteo data. 
Consequently, another wind speed and virtual potential temperature 
measurement is required, preferably in the roughness sublayer. Assume 
that the wind speed is also known at the canopy top (uh), that the 
variation in potential virtual temperature is known above (Δθv,ref) and in 
(Δθv,0) the canopy w.r.t. the temperature into the canopy (θv,0). In order 
to predict the temperature above the canopy, the ground temperature 
should be measured between height d and h. Further on, the atmosphere 
inside the canopy is postulated to be neutral. Since the potential virtual 
temperature is height independent in a neutral atmosphere (e.g., see 
Holton, 2004), z0,H = z0 can be assumed in case the ground temperature 
is measured at a lower height than d. Given the above-canopy mea-
surements uref and Δθv,ref , together with uh and Δθv,0, the unknown 
parameters are calculated by solving a system of the form 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
(
zref − d; u∗, μM , L

)
= uref

u(h − d; u∗, μM ,L) = uh

L =
u2
∗θv,0

κgθ∗

θv

(

zref − d; θ∗, μH , L
)

− θv,0 = Δθv,ref

θv(h − d; θ∗, μH ,L) − θv,0 = Δθv,0

(2.35) 

This strategy to determine the unknown parameters can be regarded 
as a variation on the profile method. 

Unfortunately, our experiments did not provide measurements for uh 
and Δθv,0 (or other measurements inside the canopy). Therefore, we 
estimate uh and Δθv,0 from the model of Mihailović et al. (1999). This 
model describes the wind speed and temperature profile in the lower 
part of the roughness sublayer, hereby taking the sparsity of the canopy 
into account by means of a surface correction Γ1. According to 
Mihailović et al. these profiles, denoted uM and θv,M, are described by 

duM

dZ
=

u∗

κΓ1Z
ΦM ,

dθv,M

dZ
=

θ∗

κΓ1Z
ΦH , Z→+ h − d.

Here, Γ1 = η(α − 1) + 1 with α2 = 4(Cd⋅LAI)1/2 in case of a forest, Cd the 
effective drag coefficient [-] and η the plant cover [-]. Using the same 
analogy as in Brisson et al. (1992), the plant cover can be characterized 
as η = 1 − exp(− γextLAI) with γext the extinction coefficient [-]. The 
value of γext for a Scots pine (the variety at the SCK CEN site) is 0.526 
(Lindroth and Perttu, 1981). Let uh ≈ uM(h; u∗, L) and Δθv,0 ≈ θv,M(h; θ∗,
L) − θv,0, then system (2.35) can be solved. Notice that the model of 
Mihailović et al. can adapt to the meteorological situation, because it is 
related to the available measurements through the parameters u∗, θ∗ and 
L in system (2.35). 

2.2.2.3. Inside-canopy model. For the inside-canopy model, we slightly 
adapt the approach from Yi (2008). In the original approach, the flow 
inside the canopy is described by the two-dimensional momentum 
equation as follows 

dτ
dz

= ρCdLADu2. (2.36) 

This equation contains two unknowns: the shear stress τ and the 
wind speed u. Therefore, a closure assumption is needed. Vegetation 
canopies that have a strongly varying leaf distribution over height, are 
preferably described by a variable LAD. To the authors’ knowledge, the 
only closure assumption in the literature that allows solving (2.36) 
analytically with a variable LAD profile, corresponds to τ = ρCdu2. A 
more detailed description about the resulting model can be found in Yi 

(2008). 
The main drawback of this model is that a zero velocity gradient is 

imposed at the canopy top, such that a smooth coupling with an above- 
canopy wind model is not possible. Therefore, we propose to overcome 
this issue by replacing the LAD by the function F (z) [m-1] i.e. 

F (z)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
ηLs

, z3 ≤ z ≤ h

LAD(z) , z2 ≤ z < z3

π
2

ρSDBH , z1 ≤ z < z2

z1

z
⋅F (z1) , 0 ≤ z < z1

(2.37)  

with ρS the stand density [trees/m2], DBH the diameter of the trunk at 
breast height [m], and Ls = uh/uh

′

[m] the Raupach shear length scale 
(Raupach et al., 1996) where uh and uh

′

are shorthand notations for 
(2.33) and (2.32) evaluated in z = h respectively. Below height z1 the 
wind profile is assumed to be perturbed by the ground-surface roughness 
elements. Denote the aerodynamic roughness length of the forest soil by 
z0,s , then Blocken et al. (2007) suggests that the height of the roughness 
layer is much larger than z0,s, which motivates the choice z1 = 10z0,s. In 
this layer, zero wind speed is imposed at the bottom and the 1/z form is 
chosen such that this condition is enforced (see (2.38)). The heights z2 
and z3 are determined by imposing continuity conditions i.e. by solving 

LAD(z3)=
1

ηLs
, LAD(z2)=

π
2

ρSDBH.

The first line in (2.37) arises from gradient-fixing with the roughness- 
sublayer model (2.32). The third line represents the frontal area of the 
trunks per unit volume of canopy. The last line represents the influence 
from the soil and this form is chosen such that u(z)→0m/s as z→0m in 
(2.38). 

Before being able to solve (2.36), we require a further parametriza-
tion of Cd. In vegetation canopies, the drag coefficient dependents on the 
local wind speed, and typically Cd∝u− r with r > 0 (Vogel, 1984). For the 
upper part of the canopy of a pine tree, one can roughly estimate r ≈ 1, 
see Vogel (1984), Table 1, p.40. Assuming this relationship, (2.36) can 
be reformulated into du/dz = F(z)u/(2 − r), which has the following 
analytical solution, 

u(z)= uhe−
η

2− r̂L(z), L(z) =
∫ h

z
F (s)ds, z ≤ h, (2.38)  

with η chosen the same as in the above-canopy model. 
Equations (2.4) and (2.6) also require τL(z) and σu(z) for the 

dispersion simulation. To estimate τL(z) above the canopy, (2.23-2.28) 
are evaluated at z = heff − d. If the stack height is lower than the canopy 
height, τL is evaluated at z = h − d. Above the canopy, σu is as discussed 
in §2.2.1. Inside the canopy, σw decreases linearly to one tenth of its 
value at height z∗. A justification of this assumption can be found in 

0 0.5 1 1.5 2
0

0.5

1

1.5

2

(a)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

(b)

Fig. 3. Predictions by the F (− ) and Wang’s model (Wang, 2012) (- -), mea-
surements (•) (Sellier et al., 2008). (a) Wind speed, (b) Reynolds stress. 
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Wilson and Shaw (1977, Fig. 3, p.1203). The variation of σw over height 
in the roughness sublayer is rather complex. So in case of an unstable 
atmosphere, σw is kept constant with σw(z) = σw(z∗ − d) for h ≤ z ≤ z∗. 
The parameter set-up inside the canopy is similar to Legg and Raupach 
(1982). 

2.3. Computational set-up 

During BR1 operation, Ar-41 gas is assumed to be released at a 
typical temperature of 298.15 K, with a release exhaust velocity of 1.5 
m/s. Ar-41 is a noble gas with a half-life of 1.8 h and Eγ = 1.294 MeV, so 
that the radioactive decay rate can be neglected over the advection time 
through our computational region of interest (approximately 1 min for a 
stack release and average wind speed). Unfortunately, the exact value of 
the source Q is uncertain. Different values are given in different refer-
ences, for this reason two values spanning the range have been adopted: 
Q1 = 57 GBq/h (Pauly et al., 1997), and Q2 = 150 GBq/h (Rojas-Palma 
et al., 2004). Both will be used in the current study. See further section 4 
for a discussion. 

Systems (2.20) and (2.35) are solved using fixed-point iteration (e.g., 
Adams and Essex, 2010, §4.2 p.220). Note that the equations in (2.35) 
only have a non-linear dependence on the variables μM and μH. There-
fore, μM and μH are solved from the second and fifth equation respec-
tively using Newton’s method. If during the iteration the value of μ 
becomes negative, Newton’s method is stopped immediately and the 
fixed-point iteration is continued with the last positive value. The 
fixed-point iteration is initialized with L→∞ for both (2.20) and (2.35). 
The value used for μM to initialize Newton’s method in the first 
fixed-point iteration is the average value 2.59 reported in De Ridder 
(2010). Since μH satisfies the same equation in the neutral case, the value 
of μM is adopted. A first estimate of u∗ and θ∗ is obtained by continuing 
with the fixed-point iteration. The fixed-point iteration is stopped if the 
residual drops below 10− 4. Since the meteorological data is only known 
up to two digits, this threshold is considered to be sufficient. 

In order to solve (2.3,2.4) and (2.3,2.6), the initial condition X0 =

(0, 0, heff) is used, and (0, 0,0) for u′
p. The effective stack height heff is 

calculated using the maximum plume rise by Brigg’s formulas (Briggs, 
1982). Next to a stack release, we will also consider simulations with a 
ground release. In this scenario, we expect that the plume will be trap-
ped within the forest canopy. Therefore, we do not apply Brigg’s 
correction for plume rise if we are modeling a forest canopy combined 
with a ground release. 

All the Lagrangian models have been implemented in C++. Particle 
trajectories are calculated completely meshfree. The size of the domain 
is 4000 × 4000 × 500 m3. At the bottom of the domain, a reflective 
boundary is imposed. For every meteo record, an optimized time step 
has been selected such that the condition 0.01[τL]k ≤ Δt ≤ 0.5[τL]k (Legg 
and Raupach, 1982) is satisfied for k = 1, 2,3. Equivalently, Δt should 
satisfy 0.01maxk[τL]k ≤ Δt ≤ 0.5mink[τL]k. The time step remains fixed 
as long as the meteorological conditions are not updated. 

The data to be simulated is divided into blocks. Each block consists of 
25 10-min records and all blocks belong to a different day of the year. 
Before the simulation of one block starts, a spin-up period of 10 min is 
inserted such that the initial condition of a mature plume is reached. 
Subsequently, dose-rate statistics were accumulated during 10 min. For 
both the stack and ground release, Np = 5⋅104 particles per time step 
were released. We verified that the combination of time step, time ho-
rizon and number of particles led to a sufficiently converged dose rate. 
To this end, five days from the NERIS data set, described in §3, were 
selected such that they are representative for all the different meteoro-
logical conditions occurring during the experiment. Each of these days 
was simulated with 2Np particles released per time step. The dose rates 
from the LT–F model were found to be the least converged with an 
average deviation of 1.15% for the stack release and 0.91% for the 
ground release. 

The Gaussian plume model has been implemented in the mathe-
matical software package MATLAB. For this, a Cartesian structured 
mesh consisting of 7.2 million hexahedral cells was used. The size of the 
computational domain is 2000 × 600 × 200 m3. In order to evaluate the 
dose rates, the integral (2.1) is discretized. This discretization requires a 
mesh. As opposed to the Lagrangian models, the concentration value, 
provided by the Gaussian model, can now be directly substituted. The 
vertical mesh is finest over the lowest 80 m with a cell height of 1 m. The 
vertical resolution was coarsened near the top. The cells at the top of the 
domain have a vertical size of 10 m. The expansion ratio varies slightly 
over the vertical direction, but remains always around two for the part 
higher than 80 m (one otherwise). The horizontal mesh resolution is 5 
m. Changing wind directions are taken into account by rotating the 
monitoring stations and keeping the plume direction fixed. 

3. Results 

The routine Ar-41 releases originating from the air-cooled-graphite- 
moderated BR1 reactor at the Belgian Nuclear Research Centre (SCK 
CEN) are the subject of this study. The site is depicted in Fig. 1. One can 
observe that the site is partly covered by forest, which is a monocultural 
Scots pine stand of approximately 60 years old. During a field campaign 
in 2005, the height and diameter at breast height of 161 trees at the SCK 
CEN site were measured. This resulted in a mean height (h) of 22.4 ±

3.7m and a mean DBH of 0.29 ± 0.05m. The stand density (ρS = 359 
trees/ha) and annual variation of LAI (average value of 2.2) were 
measured as well. Details about the campaign can be found in (Vincke, 
2006; Vincke and Thiry, 2008). The Ar-41 is released to the environment 
through a 60 m-high chimney, which is surrounded by seven stations of 
the Belgian early warning network TELERAD (Sonck et al., 2010). The 
red marks in Fig. 1 show the location of the TELERAD stations. The fact 
that all these stations are located in forest area motivates the use of a 
canopy model. Note that one station, IMR/M11, is located outside the 
actual forest near a building (see Fig. 1). Therefore, the used 
forest-roughness approximation might be too crude for simulating the 
effect of ground releases at this station properly. The authors believe, 
however, that the effect of stack releases at IMR/M11 is well simulated 
using this approximation since it seems unlikely that a strong interaction 
between the plume and the respective building occurs over the short 
distance to the chimney. The monitoring stations provide the ambient 
gamma dose rates (i.e. strictly speaking the ambient dose equivalent 
rate, usually denoted as Ḣ∗

[10]). The data spans 16 days in the first half 
of 2017, with 25 consecutive 10-min periods per day. In-situ weather 
data were provided by the met mast, located at a distance of 425 m from 
the stack. The mast provides the mean wind speed, azimuth, elevation, 
and their standard deviations at 69 m, and the temperatures at 114 m 
and 8 m. All these measurements are 10-min averaged quantities. Since 
relative-humidity measurements are not conducted, a standard value of 
80% is assumed (annual average of Brussels). Based on the in-house 
classification (Bultynck and Malet, 1972), 12 days were prevailingly 
(slightly) unstable, 3 days were prevailingly neutral and 1 day was 
slightly stable. This experimental dataset was also distributed in context 
of the NERIS atmospheric dispersion modeling experiment (Camps, 
2018). Here, members of the European Platform on preparedness for 
nuclear and radiological emergency response and recovery (NERIS) 
were invited to participate. 

3.1. Canopy wind profile and stability estimation 

Unfortunately, meteorological data inside the SCK CEN forest are not 
available. Therefore, we validate the forest canopy model versus data 
from Sellier et al. (2008) in which the Bray forest (France) was inves-
tigated. This forest is an ideal test case for the canopy model because the 
LAD model (Porté et al., 2000) was developed for this forest site and it 
exhibits similar characteristics as the SCK CEN forest: even-aged trees 
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and a comparable canopy structure, stand density, canopy height and 
diameter at breast height (DBH). Temperature measurements are not 
given, so we assume neutral stratification. Taking the limit from (2.35) 
for L→∞ yields 
⎧
⎪⎪⎨

⎪⎪⎩

u(h − d; u∗, μM) =
u∗

κΓ1
ln
(

Γ1
h − d
α2z0

)

u
(
zref − d; u∗, μM

)
= uref

(3.1)  

which needs to be solved for u∗ and μM. The values α = 1.7 and Γ1 = 1.4 
are obtained from (A.19) using the values provided in Table 4. Then, d =

12.8 m follows from (2.31). 
Fig. 3a shows the measurements together with the predicted wind 

profile (solid line). It is clear that the behavior of the measurements is 
well captured and that the wind speeds are closely approximated. For 
the sake of completeness, also the prediction of the Reynolds shear stress 
is shown in Fig. 3b; the model formulation can be found in Yi (2008) in 
which the LAD is replaced by F . Although the stresses at and above the 
canopy top are well captured, the behavior inside the canopy is less well 
represented. This is to be expected since the model only uses a first-order 
turbulence closure. Using a higher order closure can improve the stress 
predictions (Raupach and Thom, 1981) inside the canopy, but this is 
beyond the scope of the current research. We further observe that the 
stress at the canopy top is well represented. Thus, the validation shows 
that the proposed model is capable of producing a realistic canopy wind 

profile and estimating the friction velocity at the canopy top. 
In order to stress the importance of using a variable-LAD model, also 

the wind profile obtained from Wang’s constant-LAD model (Wang, 
2012) is shown. The parameter a0 in Table 4 represents the constant leaf 
area density, which was evaluated as LAI/h. Wang’s model approxi-
mates the wind speed in the crown of the trees well, but the behavior 
below the crown is not captured. This is also a reported deficit of the 
widely used constant-LAD model of Inoue (Raupach and Thom, 1981). 
This motivates the choice for the variable-LAD model from Yi (2008). 

We further evaluate the stability estimation obtained through the 
proposed canopy model. A reliable way to verify the stability classifi-
cation based on the value of the Monin-Obukhov parameter L is the Eddy 
Covariance Method. The application of this method yields an accurate 
calculation of u∗ and θ∗ by using high-frequency measurements such that 
L can be accurately estimated. Unfortunately, high-frequency measure-
ments are not available and therefore, the stability classification is 
compared with the in-house method, by Bultynck and Malet. Instead of 
L, [∂θ /∂z]/u(69m)

2 is used here as a stability parameter. See Ref. (7) for 
more details. The stability parameter L is solved from (2.20) or (2.35) 
depending whether the OF or F model is used respectively. The stability 
classification system based on L has been taken from Gryning et al. 
(2007). All the meteorological data from the NERIS experiment, 400 
records, are used for this comparison. The results are presented in Fig. 4. 

It can be immediately observed that the model choice has a clear 
influence on the stability classification. The F model, Fig. 4c, compares 

Table 4 
Parameter values used for validation of the canopy model.  

h LAI γext  ρS  DBH hc  Cd  zref  uref  z0  z0,s  a0  

20.7 m 1.83 0.526 386 trees/ha 0.316 m 10.7 m 0.26 42.85 m 5.8 m/s 1.0 m 0.25 m 0.088 m-1  

Fig. 4. Stability classification according to the (a) in-house method, (b) OF model and (c) F model. Abbreviations stand for slightly stable (SS), neutral (N), slightly 
unstable (SU), unstable (U), very unstable (VU) and anomalous (A). 
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more favorably with the in-house method, Fig. 4a, than the OF model, 
Fig. 4b. The F model predicts 9% of the data to be non-neutral, while for 
the in-house method this amounts to 10%. The OF model predicts 72% 
to be non-neutral. The anomalous values correspond to values of L that 
are close to zero, − 50m < L < 10m, such that they fall outside the 
range used in the classification from Gryning et al. (2007). It should also 
be observed that anomalous values of L are not occurring by using the F 
model. Note that the roughness-sublayer correction reduces the tem-
perature difference between the temperature at measurement and tree 
height. This explains why unstable conditions are less occurring with the 
F model. Whether the distinction between neutral and near-neutral 
(slightly (un)stable) is well predicted is of lesser importance since the 
dispersion parameterization is only altered for non-neutral conditions. 

3.2. Model comparison 

The simulated dose rates from the different models were compared 
for stack and ground releases. In case of stack releases, the simulated 
dose rates are compared with the measured ones. For the ground re-
leases, no experiments are available. The same meteorological data is 
assumed as for the stack releases, but instead the release height is set to 
10 m. We added this case for further comparison of the models. 

A comparison is elaborated using the performance measures intro-
duced by Chang and Hanna (2004). These measures include the frac-
tional bias (FB), the geometric mean bias (MG), the normalized mean 
square error (NMSE), the geometric variance (VG) and the fraction of 
predictions within a factor of 2 of observations (FAC2). Since the mea-
surements vary with maximum one order of magnitude, MG and VG are 
not relevant (see Chang and Hanna, 2004 for an explanation). The ex-
pressions of the FB, NMSE and FAC2 are as follows 

FB=

(

ḋγ,o − ḋγ,p

)

0.5
(

ḋγ,o + ḋγ,p

),

NMSE=

(

ḋγ,o − ḋγ,p

)2

ḋγ,oḋγ,p

,

FAC2= fraction ​ of ​ data ​ that ​ satisfy ​
1
2
≤

ḋγ,o

ḋγ,p
≤ 2,

where the bar denotes the average over the dataset, ḋγ,p are the model 
predictions and ḋγ,o the observations. The observation can be virtual 
(prediction from an other model) or a field measurement. In addition, 
we will also consider the mean ratio of the maximum values (MRM) i.e. 

ḋγ,p,max/ḋγ,o,max. 
For the stack releases (60 m), dose rate measurements are available 

and therefore the performance of the models can be assessed according 
to the above measures. For the ground releases (10 m), no measurements 
are available. The best that can be achieved for the latter is assessing the 
difference between the models. In order to do this, the above measures 
are evaluated using the predictions of the G–PG model as a reference 
since this is a widely known model. It should be emphasized that a 
deviating model performance w.r.t. the G–PG model is not necessarily 
problematic, but only points to large differences to a common and 
standard model. Results are displayed in Table 5 and 6, including the 
number of data points that are used in the calculation. A data point is 
rejected when the observation is not available or when it has a value 
below 10 nSv/h. This threshold has been chosen to remove noise. The 
average background radiation is around 78 nSv/h. The SARA detectors 
have a maximum bias of 10%, and a random error with a maximum of 6 

Table 5 
Model comparison for source strength Q1 = 57 GBq/h. The abbreviation M stands for measurement and the model names G–PG, G–BM, LB–OF, LB–F, LT–OF and LT–F 
are the same as in Table 2.  

release height [m] ḋγ,o  ḋγ,p  FB [-] NMSE [-] FAC2 [-] MRM [-] Not rejected [#] 

60 M LB–F 1.21 4.0 0.04 0.25 1028 
M LB–OF 1.18 3.67 0.05 0.27 1028 
M LT–OF 1.10 3.02 0.08 0.31 1028 
M LT–F 0.85 1.68 0.27 0.44 1028 
M G–BM 1.05 2.67 0.09 0.33 1028 
M G–PG 1.10 3.02 0.08 0.31 1028 
G–PG LB–F 0.18 0.07 1.0 0.81 878 
G–PG LB–OF 0.12 0.03 1.0 0.87 878 
G–PG LT–OF 0.01 0.03 1.00 1.0 878 
G–PG LT–F − 0.32  0.20 0.98 1.43 878 
G–PG G–BM − 0.07  0.01 1.00 1.06 878 

10 G–PG LB–F − 1.46  20.95 0.03 6.2 1880 
G–PG OF 0.33 3.05 0.82 0.74 1880 
G–PG LT–OF 0.28 0.47 0.98 0.80 1880 
G–PG LT–F − 0.61  1.09 0.46 1.67 1880 
G–PG G–BM − 0.30  0.33 0.99 1.38 1880  

Table 6 
Model comparison for Q2 = 150 GBq/h. The abbreviations are the same as in Table 2.  

release height [m] ḋγ,o  ḋγ,p  FB [-] NMSE [-] FAC2 [-] MRM [-] Not rejected [# ] 

60 M LB–F 0.43 0.59 0.73 0.66 1028 
M LB–OF 0.38 0.51 0.75 0.71 1028 
M LT–OF 0.27 0.37 0.79 0.81 1028 
M LT–F − 0.06  0.28 0.83 1.15 1028 
M G–BM 0.20 0.34 0.83 0.87 1028 
M G–PG 0.26 0.38 0.81 0.82 1028  
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nSv/h, motivating the choice of the 10 nSv/h noise threshold. It should 
also be mentioned that the measured dose rates have been corrected for 
background radiation. 

We compare the models in the measurement points; in this and the 
next paragraph we focus on the stack releases. To this end, consider the 
statistics in Table 5, using source strength Q1, resulting from the com-
parison with the measurements (M). We observe that the performance 
statistics for all the models, apart from the LT–F model, are similar. The 
best performing model is the LT–F model and the worst is the LB–F 
model. From the FB statistics can be inferred that the arithmetic average 
of the data set is underestimated by a factor of 3–4. The LT–F model 
performs slightly better, underestimating by a factor of 2.5. Also note 
that there is a one-to-one relationship between the MRM and FB. As an 
example, the LB–F model underestimates the arithmetic average of the 
dataset by a factor of 4.1 (see FB value) while the maximum value is 
underestimated by a factor of 4 on average (see MRM value). Similar 
conclusions can be drawn for the other models. The fact that FB is a 
measure of systematic model error implies that the prediction error on 
the observed dose rate closest to the plume centerline (the highest 
values) is the main source of systematic error. The NMSE is a measure of 
both systematic and random error; the curve in Fig. 5a indicates the 
systematic error component. Moreover, from the FB can be inferred that 
for each model, the NMSE is determined approximately for 56% by 
systematic errors for each model. The presence of systematic errors 

means that the predictive skill for each model can be further improved. 
The LT–F model has the lowest absolute random error and consequently 
it is the model with the most predictive skill. This is also clearly illus-
trated in Fig. 5a (filled symbols). 

Since the source strength is uncertain (as mentioned in §2.3), Table 6 
displays the statistics from Chang and Hanna for source strength Q2. 
Similar conclusions can be drawn as in the previous paragraph. The LT–F 
model is still the best performing model and it is the only model with a 
negligible bias. The bias of the other models has improved to a factor of 
1.2–1.5 underestimation on average. Also remarkable is that the 
contribution of the systematic error to the NMSE differs more strongly 
between the models; see Fig. 5a (open symbols). The contribution is the 
highest for the LB–F and LB–OF model i.e. 30%. The NMSE of the LT–F 
model is almost completely determined by random errors, only 1.2% is 
due to systematic errors. For the other models, the contribution lays 
between 10% and 20%. Now, the models can be less well discriminated 
based on the FAC2 measure, which is approximately 80% for all the 
models. A typical simulation result for the best (LT–F) and worst (LB–F) 
performing model is shown in Fig. 5b. The LT–F model approximates the 
dose rates better than the LB–F model for both source strengths. For Q2, 
the LT–F model also approximates the bisector of the plane well with a 
tendency to underestimation for dose rates higher than 90 nSv/h. In 
general, the statistics have clearly improved with Q2. 

We now compare the models for the ground (10 m) release. It can be 

Fig. 5. (a) FB and NMSE for all models when 
compared with the measurements in case of Q1 (filled 
symbols) and Q2 (open symbols); LT-F (□), LT-OF (∘), 
LB-F (⋄), LB-OF (⋆), G-F (△), G-OF (▽); the curve 
shows the systematic error component of the NMSE 
versus FB, (b) plot of the predicted dose rates (ḋγ,p) by 
the LT–F (dark shading) and LB–F (white shading) 
model w.r.t. the measured ones (ḋγ,o) in stations IMR/ 
M08 and IMR/M13 on 2017/05/04; the shading in-
dicates the region of uncertainty due to the uncertain 
source strength.   

Table 7 
(a) Meteorological cases and (b) parameter values for the sensitivity analysis, (c) SI values for each parameter at three detector distances (120 m, 185 m and 235 m).  

(a) 

case L [m] u [m/s]  σazi [
◦
] σelev [

◦
]

1 − 615  5.6 12.8 8.4 
2 − 80  2.7 19.5 16.3 
3 − 291  4.1 20.6 10.9 
4 − 226  2.8 59.3 17.5  

(b)  

h [m] LAI [ − ]  DBH [m] Δhc 

[m]  
Cd [ − ]  L 

[m] 
u [m/ 
s]  

wind direction 
[
◦
]

default 22.4 2.2 0.29 10.0 0.2 / 4.1 0 
min 15 1.0 0.1 5.0 0.05 − 80  2.4 0 
max 35 3.43 0.5 15.0 0.8 ∞  5.8 119 
case 1 1 1 1 1 2 3 4 
reference Vincke (2006); Gielen et al. 

(2016) 
Vincke and Thiry (2008); Vincke 
(2006) 

Vincke (2006); Gielen et al. 
(2016) 

/ Yi 
(2008) 

(see text)  

(c) 

distance h LAI DBH Δhc  Cd  L u  wind direction 

120 m 0.33 0.27 0.01 0.05 0.19 0.23 0.38 0.56 
185 m 0.30 0.28 0.01 0.04 0.18 0.22 0.40 0.65 
235 m 0.20 0.24 0.01 0.01 0.10 0.22 0.41 0.72  

G. Bijloos et al.                                                                                                                                                                                                                                  



Journal of Environmental Radioactivity 225 (2020) 106445

12

seen from Table 5 that the LB–F, LT–F and G–BM model predict higher 
dose rates than the G–PG model, while the LT–OF and LB–OF model 
predict lower ones; see the FB. Nonetheless, the LT–OF and G–BM model 
have a very similar performance as the G–PG model w.r.t. the NMSE and 
FAC2 measure. So, it seems that not much accuracy is gained by using a 
high-roughness parameterization for a Gaussian model, not even for a 
ground release. The LB–F model deviates the most from the G–PG model. 
As can be inferred from the FB measure, the LB–F model estimates the 
dose rates on average roughly a factor of 6 higher than the G–PG model. 
It is also clear from the FAC2 measure that the discrepancy between both 
models is more apparent for the ground than for the stack releases. For 
the stack releases, 90% of all the model predictions falls within a factor 
of 2.2 of each other, whereas for the ground releases 90% falls within a 
factor of 14. 

3.2.1. Sensitivity analysis 
Since the forest canopy model contains a substantial amount of pa-

rameters that are usually only roughly known, we perform a sensitivity 
analysis. An upper bound of the sensitivity for each variable can be 
estimated using the sensitivity index (SI). The sensitivity of a quantity D 
w.r.t. a parameter p is then given by (Hamby, 1994) 

SI(D)=
Dmax − Dmin

Dmax
, Dmax : =max{D(pmin),D(pmax)}, Dmin

: =min{D(pmin),D(pmax)}

in which the common values of p are assumed to be confined to the 
interval [pmin,pmax]. The investigated parameters are tree height h, LAI, 
diameter of the trunk at breast height DBH, the canopy depth Δhc, the 
effective drag coefficient Cd, the effect of stratification (L), wind speed u 
and wind direction. The default, minimum and maximum values of each 
parameter are displayed in Table 7b. These values are based on available 
measurements or on values cited in the literature (see references in 
Table 7b). 

Four cases are selected for the meteorological parameters (see 
Table 7a). Case 1 represents the conditions at the observed median value 
of L (2017/05/04 at 13:40); Case 2 corresponds to the conditions at 
min|L| (2017/05/03 at 15:50); Case 3 corresponds to conditions of 
maximal wind speed variation over half an hour i.e. u is limited to 

[min{uI− 1, uI, uI+1},max{uI− 1, uI, uI+1}] such that 
⃒
⃒
⃒
⃒uI+1 − uI

⃒
⃒
⃒
⃒, 
⃒
⃒
⃒
⃒uI − uI− 1

⃒
⃒
⃒
⃒

or 
⃒
⃒
⃒
⃒uI+1 − uI− 1

⃒
⃒
⃒
⃒ is maximal with uI the I-th wind speed record (2017/04/ 

18 at 14:10); Case 4 corresponds to the conditions at maxσazi (2017/04/ 
18 at 11:50). 

In Table 7c, we investigate the sensitivity of dose rates measured at 
three detectors for those selected conditions. These are located at ground 
level at 120 m, 185 m and 235 m downstream from the BR1 chimney. 
These distances correspond to the minimal, average and maximal dis-
tance respectively from a detector to the BR1 chimney. The sensitivity is 
conducted for the LT–F model since this model reproduced the mea-
surements the best. The dose rates are most sensitive to the wind di-
rection and the wind speed u. The most sensitive forest characteristics 
are the LAI and tree height h, whereas predictions are insensitive to DBH 
and Δhc. The dose rate calculation is moderately sensitive to Cd. Clearly, 
the model bias cannot be attributed to the sensitivity of the individual 
forest characteristics. Only the sensitivity to the wind direction is 
plausible. 

4. Discussion 

The Langevin models distinguish themselves from the other models 
by their capability of taking the autocorrelation of the particle’s velocity 
into account. Since no decisive value has been obtained for the source 
strength, the most objective observation is that there are performance 
differences between the models. In particular, the LT–F model tends to 

perform better than the other models. Note that the LB–F model has the 
same terrain parameterization as the LT–F model, but does not take the 
autocorrelation into account. The LT–OF model, on the contrary, does 
take the autocorrelation into account, but it has a different terrain 
parameterization. Both models perform differently than the LT–F model, 
which suggests that both the autocorrelation and the terrain roughness 
modeling are important aspects. 

It is somewhat surprising that the performance of the two Gaussian 
models is closer to the models based on the Langevin equation (LT–OF 
and LT–F) than to the ones derived from the general advection-diffusion 
equation (LB–OF and LB–F). As explained in section 2.1.2, the Gaussian 
models are the analytical solution of a simplified advection-diffusion 
equation. In case of the G–BM model, the dispersion parameters were 
originally expressed as the product of the wind velocity’s standard de-
viation multiplied by the travel time (Bultynck and Malet, 1972). It is 
interesting to note that this is the same expression Taylor obtained for 
the standard deviation of the particle positions for travel times smaller 
than the Lagrangian time scale (Taylor, 1922). In the G–BM model, this 
expression was used to calibrate the power law form of the dispersion 
parameters. Thus, since Taylor’s theory is implicitly incorporated into 
the G–BM model, it might explain why its performance is situated be-
tween the open field models (LB–OF and LT–OF) and the LT–F model. 
Because the PG parameterization is obtained via direct calibration to 
tracer experiments, the effect of the autocorrelation is also likely 
incorporated implicitly. Incorporating the effect of the particle veloc-
ity’s autocorrelation seems to enhance the consistency between models 
more strongly than the terrain parameterization does. 

It should be remarked that a source strength measurement is not 
available for the SCK CEN site. Several source strength estimates are 
available and they differ within a factor of three. However, the corre-
spondence between simulation results and observations is the best for 
the higher source strength Q2. This is consistent with previous work 
from Pauly et al. (1997) in which good correspondence was obtained 
between the G–BM model and measured dose rates in the stations close 
to the stack and plume centerline for Q2. 

5. Conclusions 

The performance of several dispersion models to predict dose rates in 
the first 300 m from the source on high-roughness terrain has been 
tested. Three types of models have been considered: the Gaussian model, 
the general advection-diffusion equation and the Langevin equation, 
each equipped with an open-field and forest terrain parameterization. It 
has been demonstrated that the vegetation canopy parameterization is 
capable of well predicting the wind profile inside the vegetation canopy. 
Also the capability of the open field and vegetation canopy parameter-
ization to predict stratification has been validated by comparing with 
the in-house method. The distribution of the non-neutral records is 
consistently predicted between the vegetation canopy parameterization 
and the in-house method. The open field parameterization overpredicts 
the unstable conditions w.r.t. the in-house method. The three method-
ologies don’t agree about the distribution of the neutral and near-neutral 
records. As a conclusion, the vegetation canopy parameterization gives 
reasonable results for high-roughness terrain. 

An ambient gamma-dose-rate data set was obtained from routine Ar- 
41 releases originating from the BR1 reactor at the SCK CEN site, situ-
ated in a forest environment. Differences between the model perfor-
mances are noticeable, where the Langevin equation with vegetation 
canopy parameterization tends to perform the best. Different values for 
the source strength have been reported, resulting in a rather high un-
certainty on this parameter. The bias of the models remains always 
between a factor of one and four, partly due to the selected source 
strength. The uncertainty on the dose rates due to the model choice is a 
factor of 2.2 for a stack release, whereas this uncertainty for a ground 
releases is a factor of 14. The sensitivity analysis emphasizes that the 
wind direction is a sensitive parameter for dose-rate simulation that 
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should be carefully taken into account. 
It should be emphasized that the dose-rate simulation can be 

extended to fluency rates by taking a weighted sum over the different 
nuclides. A recommendation for model improvement is to include a 
stochastically varying wind direction since the variation in wind direc-
tion has been demonstrated to be a sensitive parameter for dose rates in 
the near-field range. This effect becomes more dominant in low-wind 
speed conditions, such as occurring below the vegetation canopy. 
These might be topics for future research. 
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A. Appendix: overview forest parameterization 

Since the forest parameterization is quite extended, an overview is given here for the sake of convenience. The forest characteristics that need to be 
provided as an input are tree height (h), Leaf Area Density (LAD), Leaf Area Index (LAI), extinction coefficient (γext) and drag coefficient (Cd). The 
requested meteorological parameters are the Von Kármán constant κ, pressure at ground level (p0), air density at ground level (ρ), gravitational 
acceleration (g), measurement height zref of the wind speed uref above the canopy, measurement heights zref (above the canopy) and z0,H (between 
d and h) of the ambient temperatures leading to Δθv,ref , the wind speed uh located at h, the ambient temperature at h leading to Δθv,0. It is not a 
requirement for the latter two measurements to be located at h, but they should at least be located in the roughness sublayer, i.e., between h and Z∗ +

d. 
The next system needs to be solved for the parameters u∗, θ∗, L, μM and μH: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
(
zref − d; u∗, μM , L

)
= uref

u(h − d; u∗, μM ,L) = uh

L =
u2
∗θv,0

κgθ∗

θv

(

zref − d; θ∗, μH , L
)

− θv,0 = Δθv,ref

θv(h − d; θ∗, μH ,L) − θv,0 = Δθv,0

(A.1) 

If uh and Δθv,0 are not measured, then they can be estimated as uh ≈ uM(h − d; u∗, L) and Δθv,0 ≈ θv,M(h − d; θ∗,L) − θv,0. The MOST profiles together 
with the kernel functions and its integrated forms are as follows: 

u(Z; u∗, μM ,L) =
u∗

κ

(

ln
(

Z
z0

)

− ΨM(Z/L)

+ΨM(z0/L) + Ψ∗
M

(
Z
L
,

Z
Z∗

; μM

)

− Ψ∗
M

(
z0

L
,

z0

Z∗

; μM

))

,

(A.2)  

θ(Z; θ∗, μH , L) − θv,0 =
θ∗

κ

(

ln
(

Z
z0,H

)

− ΨH(Z/L)

+ΨH
(
z0,H

/
L
)
+ Ψ∗

H

(
Z
L
,

Z
Z∗

; μH

)

− Ψ∗
H

(
z0,H

L
,
z0,H

Z∗

; μH

))

,

(A.3)  

Ψ∗
i

(
Z
L
,
Z∗

L
; μi

)

≈Φi

[(

1+
1

2μi

Z∗

Z

)
Z
L

]
2
3

ln
(

1+
3
2

Z∗

μiZ

)

exp( − μiZ / Z∗), i=M,H, (A.4)  

uM(Z; u∗,L)=
u∗

κΓ1

(

ln
(

Z
α2z0/Γ1

)

− ΨM(Z /L)+ΨM
( [

α2z0
/

Γ1
] /

L
)
)

, (A.5)  

θM(Z; θ∗,L) − θv,0 =
θ∗

κΓ1

(

ln
(

Z
α2z0/Γ1

)

− ΨH(Z/L) + ΨH
( [

α2z0
/

Γ1
]/

L
)
)

, (A.6)  

ΦH(Z / L)=Φ2
M(Z /L)= (1 − 16Z/L)− 1/2

, L < 0, (A.7)  

ΦH(Z / L)=ΦM(Z /L)= 1 + 5Z / L, L> 0, (A.8)  

ΨH(Z /L)= 2ln
(

1 + x2

2

)

, x=(1 − 16Z/L)1/4
, L < 0, (A.9)  

ΨM(Z / L)= ln
[(

1 + x2

2

)(
1 + x

2

)2]

− 2arctanx+
π
2
, x=(1 − 16Z/L)1/4

,L < 0, (A.10)  

ΨM(Z / L)=ΨH(Z / L)= − 5Z / L, L> 0. (A.11) 
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The ambient temperature T is converted to the virtual potential temperature θv as follows: 

θv(z)= Tv(z)
(

p0

p(z)

)R/cp

, R= 287J
/
(kg K), cp = 1004J

/
(kg K), (A.12)  

Tv(z)= T(z)
1 + rv(T(z))/0.622

1 + rv(T(z))
, rv(z)=

0.622ev(T(z))
p(z) − ev(T(z))

, ev(z)=RH(z)es(T(z)), (A.13)  

p(z)= p0 − ρgz, (A.14)  

es(T)=
[
1.0007+ 3.46 ⋅ 10− 6p0

]
⋅611.21exp

{
17.502T

240.97 + T

}

. (A.15) 

The parameters needed to evaluate the above functions correspond to: 

d =
ηαd

η(α − 1) + 1
, d = argzmax(LAD(z)), (A.16)  

z0 = 0.071h, (A.17)  

Z∗ = 2h − d, (A.18)  

Γ1 = η(α − 1)+ 1, α2 = 4(Cd⋅LAI)1/2
, η= 1 − exp{− γextLAI}, (A.19)  

θv,0 = θv
(
z0,H

)
, d + z0 ≤ z0,H < h. (A.20)  
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