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ABSTRACT
Global soils store more carbon than the atmosphere and terrestrial
vegetation combined, with a significant proportion located in colder
regions. Earth system models incorporating climate-carbon feedback
suggest that a warming climate can potentially destabilize soil carbon
storage, leading to carbon release into the atmosphere. However,
existing models are based on limited measurements of soil organic
carbon (SOC) loss and a comprehensive global-scale climate indices that
effectively characterizes climate-SOC relationships is currently lacking. In
this study, we present a synthetic analysis that evaluates the
effectiveness of different climate indices in estimating SOC stocks using
a global compilation of SOC data and the Boltzmann Sigmoidal Model
(BSM). Our findings reveal that a climate index, defined as
TD-Index = exp(−0.002T − 0.8D), where T and D are mean century
temperature (MCT) and dryness respectively, serves as the most reliable
predictor for SOC stocks. Furthermore, we observed temperature
tipping points for SOC, ranging from −4.5 to −3°C for different soil
layers. As the temperature transitions from being below to above the
tipping point, the SOC shifts from a stable, high state to a rapid decline.
An analysis of the projected temperatures for SOC under various future
greenhouse gas emissions scenarios showed a northward shift in the
northern hemisphere, potentially opening up vast areas of arctic
territory to increased SOC loss from the soils, with corresponding
emissions of the stored carbon into the atmosphere. Our findings open
up new avenues for research on and management strategies for
climate-related SOC dynamics.
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1. Introduction

The net release of organic carbon from soils (SOC) in the form of carbon dioxide (CO2) into the
atmosphere is the result of the imbalance between organic matter input, primarily driven by
plant primary productivity, and respiration by soil microorganisms and plant roots (Crowther
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et al. 2019; Varney et al. 2020). SOC turnover largely determines the direction and magnitude of
climate-carbon cycle feedbacks (Cox et al. 2000; Friedlingstein et al. 2006; Clarke et al. 2021).
SOC losses are the result of a complex interplay of factors and cannot be solely attributed to
temperature increases (Post et al. 1982; Yi et al. 2010; Luo et al. 2017; Hartley et al. 2021). Pre-
dicting SOC losses induced by warming presents uncertainties due to the nonlinear nature of
multiple control parameters, whose combined effects do not simply sum up (Wiesmeier et al.
2019).

Although laboratory and field observations have significantly advanced our understanding
of the environmental factors influencing SOC losses (Doetterl et al. 2015; Melillo et al. 2017;
Crowther et al. 2019; Nottingham et al. 2020), these approaches are often specific to particular
soil types and limited in duration, and thus struggle to reveal the bigger picture at larger tem-
poral and spatial scales (Wiesmeier et al. 2019). Besides, the drivers of SOC take distinct
weight on various scales, e.g. while soil physico-chemistry is the core factor influencing
SOC on the micro scale, at regional and sub-continental scale SOC dynamics are mainly driven
by land use and vegetation, and climate is usually the determining variable on a global scale
(Doetterl et al. 2015; Wiesmeier et al. 2019). At small spatial scales, where factors such as cli-
mate are less variable, the physico-chemical properties of the soil and microbiological factors
become important. Whereas at global scales, climate determines the balance of SOC inputs and
outputs.

Processes in soil are slow and their responses to environmental factors are not synchro-
nized. The turnover time of SOC varies widely across different soil types (labile or recalci-
trant) and depths (Koven et al. 2017; Abramoff et al. 2022). The steady state of SOC
stocks theoretically represents the long-term balance between NPP and soil respiration. How-
ever, the time required to reach a new steady state from a perturbed state, such as a land use
change, varies greatly from warm to cold regions (Smith 2005). On a global scale, the IPCC
guidelines for greenhouse gas inventories recommend a minimum of 20 years for SOC to
approach a new steady state (Eggleston et al. 2006). Therefore, resolving the steady-state
relationship between different climates and SOC is key to reducing uncertainty in climate-car-
bon cycle feedbacks.

SOC models typically define various carbon pools based on turnover time and predict future
SOC stocks by calculating the input and output fluxes of different carbon pools in response to cli-
mate change (Wang et al. 2013; Wieder et al. 2014; Ahrens et al. 2015; Abramoff et al. 2022). How-
ever, the performance of those models can be impaired not only by uncertainty of model structure
and parameters, but also by limited data availability (Shi et al. 2018; Wieder et al. 2018). Also, the
uncertainty rises as the spatial scale increases (Wiesmeier et al. 2019). Therefore, many efforts have
been made to delineate soil zones and estimate soil organic matter by constructing climate indices
(Jenny 1980; Yi et al. 1996). Generally, the climate indices is composed of several multiplied
equations, among which the temperature equation is usually in exponential form, and the water
equation has multiple different forms of equations depending on the proxy (precipitation, soil
moisture content, water potential, etc.) used (Qi and Ming 2001). However, the importance of
different climate factors remains controversial (Giardina et al. 2014; Canarini et al. 2017; Fang
et al. 2018), and no consensus on a global, intuitive and clear climate-SOC relationship has
coalesced.

In recent years, extensive soil mapping data and machine learning developments have resulted
in global SOC databases (Batjes et al. 2017; Hengl et al. 2017) that can help identify global climate-
SOC relationships. Here, we constructed three climate indices to explore their performance as
SOC predictors at different time scales and soil depths (Figure 1). We hypothesize that (1)
relationships between climate and SOC are distinct at different soil depths and (2) climate indices
would perform more stably over longer timescales and perform better in shallower soils because
shallow soils are more responsive to climate and will therefore reach steady state over a shorter
time period.

2 Q. ZHANG ET AL.



2. Methods

2.1. Climate data

Annual mean temperature and precipitation data spanning from 1916 to 2015 were obtained from
the Climatic Research Unit (CRU) of the University of East Anglia (Harris et al. 2014). The climate
data have a spatial resolution of 0.5 degrees latitude/longitude (CRU TS v. 4.04). Mean net radiation
data for the same period were derived from monthly values provided by the National Oceanic and
Atmospheric Administration (NOAA) reanalysis, with a resolution of one degree (Slivinski et al.
2019). To achieve a consistent resolution, a nearest neighbour interpolation approach was
employed to downscale the one-degree resolution data to a 0.5-degree resolution. Net radiation
was determined as the difference between net incoming shortwave radiation and net longwave radi-
ation for each month, then aggregated to annual mean values. The dryness (D) was calculated by:

D = Rn

LP
(1)

where Rn (MJ m−2 yr−1) is mean annual net radiation, P (mm yr−1) is mean annual precipitation,
and L ( = 2.5 MJ kg−1) is the enthalpy of vapourization. The grids with no precipitation or negative
net radiation were removed before final analysis.

2.2. SOC data

SOC data for six standard depth intervals were obtained from the International Soil Resource and
Information Center (ISRIC) (Batjes et al. 2017). The ISRIC data has gained broad consensus and is
widely used for studying SOC loss dynamics resulting from land-use practices (Sanderman et al.
2017). The original spatial resolution of the SOC database was 250 m, which was upscaled to a res-
olution of 0.5°×0.5° using nearest neighbour interpolation.

Figure 1. Climatic drivers of soil organic carbon (SOC) storage. The SOC data were retrieved from the International Soil Reference
and Information Centre (ISRIC). Three climate indices, namely T-Index, P-Index, and TD-Index, were defined by Equations (3)–(5).
The climate variables, including temperature (T ), precipitation (P), and net radiation (Rn), represent the long-term annual mean
values from 1916 to 2015. Temperature and precipitation data were sourced from the Climatic Research Unit (CRU) of the Uni-
versity of East Anglia (CRU TS v. 4.04), while net radiation data were calculated using National Oceanic and Atmospheric Admin-
istration (NOAA) data. All climate data were resampled to a 0.5°×0.5° grid resolution using nearest neighbour interpolation.
Further details on why the TD-Index is identified as the best predictor can be found in Figure 2.
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2.3. Climate indices

An empirical model proposed by Jenny (1980) for modelling the synergistic control of temperature
and precipitation on soil nitrogen concentration as:

N = 55 e−0.08T(1− e−0.005P/Q) (2)

where N is soil organic nitrogen content (%), T and P are long-term annual mean temperature (°C)
and precipitation (mm yr−1) respectively, and Q is vapour pressure deficit (k Pa).

Yi et al. (1996) modified Jenny’s formula which successfully predicted Chinese soil types based
on a 40-year average of observational temperature and precipitation.

Considering the coupling of the terrestrial carbon and nitrogen cycles and the similar response
of soil carbon and nitrogen to different environments (Redfield 1958; Thornton and Rosenbloom
2005), we hypothesize that similar climatic indices may also be valid in predicting SOC. Through
statistical correlation analysis, three climate indices were identified as performing better when con-
sidering either single or combinations of different climate factors: the T-Index, the TP-Index, and
the TD-Index. The T-Index is defined as:

T-Index = e−0.02T (3)

where T is mean annual temperature (oC) at a grid cell. The TP-Index was defined as:

TP-Index = e−0.05T(1− e−0.003P) (4)

where P is mean annual precipitation (mm yr−1) at a grid cell. the TD-Index as:

TD-Index = e−0.02T−0.8D (5)

where D is dryness defined by (1). Parameters in the indices were determined by fitting the highest
coefficient of determination (R2) and lowest root mean squared error (RMSE).

Figure 2. Performance summary of the Boltzmann-Sigmoidal Model (BSM) using three different climate indices for each of the six
soil layers. The three indices, defined by Equations (2)–(4), are utilized in the BSM represented by Equation (6). The bars in the
figure represent the amount of variance explained (R2) by each predictor (index) in the respective soil layer. The p-value < 0.001
for each fit. Corresponding AICs can be seen in Extended Data Table A1.
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2.4. BSM

The relationship between SOC and climate variables usually exhibits sigmoidal behaviour, where
the rate of SOC accumulation or depletion saturates with changing climatic conditions. We applied
BSM, a modified logistic sigmoidal function by Boltzmann to fit the relationship of SOC and the
climatic indices. BSM is written as:

y = A2 + A1 − A2

1+ e

x− x0
dx

(6)

where y represents SOC (t/ha), x represents one of three climatic indices, the parameters A1 and A2

are the magnitudes of SOC for x � 0 and x � 1, respectively, x0 is the inflection point and dxis
the slope at the inflection point. We made the assumption that steady states of SOC stocks and cli-
mate can be approximated by their long-term means (Yi and Jackson 2021).

2.5. Model analysis for steady-state of SOC and temperature

The scatterplot SOC-TD-Index on 100-year scale of different soil layers were grouped by TD-Index
with a 0.1 interval (see Extended Data Figure A3). The mean SOC and temperature values were
averaged from different TD-Index groups. The linear model was first used to fit the steady state
of SOC and temperature. We observed that in the steady-state relationship between SOC and temp-
erature, there appears to be a temperature breakpoint. Below this breakpoint, SOC changes mini-
mally, while above it, SOC decreases almost linearly with temperature. To detect the presence of this
temperature breakpoint, we referred to the approach in Johnston and Sibly (2018) to compare the
linear model with a threshold model, which is defined as follows:

SOC = C, T ≤ T0

a(T − T0)+ C, T . T0

{
(7)

where C is a constant SOC value, T0 is the temperature breakpoint, a is slope of the linear decreasing
phase.

Temperature breakpoints were examined within the temperature range of 17.4–22.4°C, with
increments of 0.1°C. Subsequently, differences in AICs (Akaike Information Criteria) of the linear
and threshold models were compared for each temperature breakpoint. The temperature break-
point resulting in the greatest ΔAIC was considered to be the one with the strongest endorsement,
provided that ΔAIC exceeded 5 for extra degrees of freedom and P < 0.05 in a likelihood ratio test.

3. Results

We utilized the BSM represented by Equation (6) to assess the performance of the three indices.
Initially, we applied these indices to six soil depth intervals (Figure 2). While various factors con-

tribute to the balance of SOC stocks, temperature emerges as a dominant factor, and thus, the T-Index
significantly explains the variability in SOC stocks. The TP-Index performs better than the T-Index
since it incorporates the effect of precipitation (as shown in Figure 2). Despite the better performance
of the TP-Index, it does not consider the processes of light control on organic matter inputs to SOC
stocks through photosynthesis or the contribution of evapotranspiration to the soil water balance. In
contrast, the dryness index (D) provides a more comprehensive characterization of the energy and
water balance. Our results demonstrate that the TD-Index outperforms the other two indices in cap-
turing variations in SOC stocks (as illustrated in Figure 2), as summarized in Figure 1.

Our findings indicate that the TP-Index does not significantly differ from the T-Index in its
ability to explain variations in SOC stocks in deeper soil layers (as shown in Figure 2). This
suggests that the influence of precipitation on SOC stocks differs between the top soil and
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deep soil. On a global scale, more than half of the SOC is stored below 20 cm, but precipitation
plays a lesser role in deep soil compared to the topsoil (Engelhardt et al. 2018). As the soil gets
deeper, each of the three climate indices explains a smaller percentage of the variation in SOC.
This implies that climate has less influence on SOC the deeper the soil layer is on the timescales
in this study.

To assess the sensitivity of the BSM parameters to different time scales, we conducted sensitivity
tests using the SOC data spanning a 100-year period from 1916 to 2015. Initially, we divided this
100-year period into 10 ten-year intervals, resulting in 10 sets of BSM parameters for each SOC
pool (as shown in Figure 2). Subsequently, we estimated the values of the four BSM model par-
ameters or nine twenty-year groups by shifting the time window by 10 years (as illustrated in
Extended Data Figure A1). By doing so, we obtained the values of the four BSM model parameters
for 55 groups representing different time scales, ranging from 10 years to 100 years (as depicted in
Extended Data Figure A2). This analysis revealed that the values of the BSM model parameters for
different time scales tend to converge rather than diverge. Outliers were primarily observed on the
ten-year and twenty-year time scales, with fewer outliers on the twenty-year time scale compared to
the ten-year time scale (as presented in Extended Data Table A2). Based on these findings, we con-
clude that the BSMmodel parameters exhibit insensitivity to the length of the time period when the
time scale is longer than 20 years.

Given the best performance of TD-Index and the validity of the steady-state assumption, the
BSM with TD-Index on 100-year scale is used in the following analysis. Due to the similar perform-
ance of the indices at certain soil depths, we merged the depth intervals into three categories: a top
layer from 0 to 15 cm, a transitional layer from 15 to 30 cm, and a deep layer from 30 to 200 cm (as
depicted in Figure 3). As expected, Figure 3 confirms that the impact of climate on SOC stocks
decreases significantly with soil depth. The TD-Index is able to explain 74% of the variation in
SOC stocks in the top soil layer (0–15 cm), but only 35% in the deep soil layer (30–200 cm) and
53% in the transitional layer (15–30 cm). An increase in temperature or a decrease in the aridity
index leads to an increase in the TD-Index, so an increase in the TD-Index indicates better hydro-
thermal conditions for SOC sequestration. TD-Index shows the same spatial heterogeneity as the
soil organic carbon, especially in fast pool, with a correspondingly high stock of soil organic carbon
where the TD-Index is high (Extended data Figure A4).

The BSM pattern of SOC and TD-Index can be broadly divided into three phases.With an increase
in TD-Index, SOC shows a gradual rise initially, followed by a rapid ascent, and ultimately stabilizes.
This suggests the potential presence of climatic tipping points for SOC. Especially the transition from
a high-stability phase to a rapid-change phase may signify substantial losses in SOC. In this regard, we
transformed the scatter data from Figure 3 into boxplot distributions, as shown in Extended Data
Figure A3. From these mean values in the noise-free boxplot, we first conducted an analysis of the
steady-state of SOC and temperature by comparing the linear and threshold models (see Method).
The results indicate that the temperature breakpoints for the SOC-temperature relationship, ranging
from the upper soil layer to the deeper soil layers, are −4.3, −4.5, and −3.0°C, respectively (Figure 4).
When the temperature falls below the breakpoints, SOC remains high and varies minimally with
temperature changes. Conversely, when the temperature surpasses the breakpoints, SOC experiences
a rapid decline. This phenomenon is particularly pronounced in the top and transition soil layers. In
the deeper soil fluctuations around an MCT of approximately 20°C across soil layers, we did not
detect breakpoints in these cases. In terms of the steady state of SOC and dryness, we observed a con-
sistent pattern across different soil layers. SOC levels were notably high in wet conditions, while a dis-
tinct decrease was observed near a dryness index of 1 (Figure 4).

4. Discussion and conclusions

We consolidate multiple climate factors influencing SOC stocks into a single TD-Index, represent-
ing a century-scale steady-state framework. Our study demonstrates stable climate indices’

6 Q. ZHANG ET AL.



performance over longer scales and in shallower soils. The TD-Index outperformed the TP-Index
or temperature alone because dryness, as defined by Budyko (1961), encompasses not only the effect
of precipitation but also the influence of net radiation. This comprehensive index provides a better
understanding of the fundamental nature of dryness and its impact on SOC stocks. Consistent with
previous studies, our results suggest that SOC stock is higher in cold and humid places, while lower
in hot and dry regions (Post et al. 1982; Jobbágy and Jackson 2000; Crowther et al. 2019). Impor-
tantly, this indicates the regulation of warming-induced carbon loss by drought. Water stress limits
photosynthesis reducing organic carbon input, but at the same time soil respiration is weakened due
to reduced microbial activity and availability of substrates for decomposition (Davidson and Jans-
sens 2006; Davidson 2020). Wetlands and cold regions exhibit the highest accumulation of carbon
stocks, indicating that cold or waterlogged conditions have a greater impact on reducing respiratory

Figure 3. TD-Index as a predictor of soil organic carbon (SOC) in three soil layers: (a) Fast carbon pool (0–15 cm); (b) Transitional
carbon pool (15–30 cm); and (c) Slow carbon pool (30–200 cm). The scatter data points of SOC vs TD-Index, with a resolution of
0.5°×0.5°, are represented by filled blue circles. Grid cells with missing data or negative net radiation (Rn) values were excluded
from the analysis. The colour clouds depict the overall density distribution of the data points, smoothed using a nonparametric
Kernel density technique. The black lines correspond to the fitting curves obtained from the Boltzmann-Sigmoidal Model (BSM)
(6) using the SOC and TD-Index data, and the values of the four model parameters are provided for each soil layer. Further details
on the BSM can be found in the Methods section.
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carbon losses compared to primary production (Crowther et al. 2019). Besides, the imbalance is also
related to vegetation types and biomass abundance (Wang et al. 2003; Frank et al. 2012; Canarini
et al. 2017). Temperature sensitivity (Q10) of SOC decomposition varies widely among vegetation
types. The composition of soil bacteria and C:N concentrations which structured primarily by veg-
etation types, driving fundamentally different response of SOC dynamic to climate change (Bates
et al. 2018).

Our results support previous isotopic SOC studies (Balesdent et al. 2018), which have shown that
SOC responses to climate exhibit layering effects, with different responses observed in the topsoil
compared to the deep soil. In the topsoil layer, the evolution of SOC stocks is driven by the balance
between net primary production (NPP) and soil respiration, which is influenced by climate factors
through intricate feedback connections (Heimann and Reichstein 2008). For instance, autotrophic
processes associated with NPP are closely linked to heterotrophic soil microorganisms involved in
respiration. However, autotrophic processes are often limited by nitrogen availability, while

Figure 4. Steady state of soil organic carbon (SOC)- temperature and SOC-dryness. The mean SOC and mean century temperature
(MCT) values presented in panels (a) top pool (0–15 cm), (d) transitional pool (15–30 cm), and (g) deep pool were derived from
the scatter data in Figure 2, grouped by TD-Index with a 0.1 interval (see Extended Data Figure A3). The dashed and solid lines
represent the prediction from the linear and threshold models (see Method) of the SOC-temperature steady state, respectively,
with R2L and R2T goodness of fit. (b), (e) and (h) show the temperature breakpoints for top to deep soil layers, identified by the
difference in AIC (Akaike Information Criteria) of threshold to linear model where higher values provide a better fit. (c), (f) and (i)
present steady state of SOC-dryness, derived the same way as we obtained the SOC-MCT relationship.
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heterotrophic communities and activities are limited by labile soil carbon (Tiessen et al. 1994). Both
autotrophic and heterotrophic processes co-vary with climate, but they follow different pathways
(Crowther et al. 2019). The feedback loops and response patterns in the topsoil layer are complex
due to these interconnections (Balesdent et al. 2018).

As we move deeper into the soil profile, the abundance of bacteria, fungi, plant inputs, rhizo-
sphere, and variability in soil moisture diminish. Soil carbon in deeper layers tends to be older,
and the biotic communities are more persistent (Soong et al. 2020). The carbon inputs from plants
and their roots, which fuel the metabolism of heterotrophic soil microorganisms, remain concen-
trated in the topsoil layers and exhibit stronger feedback with precipitation. In contrast, the
microbial communities in the deeper soil layers are less abundant, older, and more resilient to
water conditions. Moreover, precipitation (P) represents only the input component of the soil
water budget, while the output component is primarily driven by evapotranspiration, which is
influenced by temperature (T ) and net radiation (Rn). The Budyko dryness index (D) combines
both the energy and water balance components and is closely linked to productivity. Therefore,
it is conceptually reasonable that the TD-Index, which incorporates both temperature and dryness,
demonstrates a greater ability to explain the climate controls on SOC stocks from the top to the
bottom soil layers, compared to other climate indices (Figure 1). Additionally, labile carbon
becomes extremely limited in deep soils (Rumpel and Kögel-Knabner 2011; Balesdent et al.
2018). Microorganisms in deep soil are adapted to environmental conditions with less climate
variability and higher limitations in labile carbon availability. As a result, they become more resist-
ant and resilient to changes (Yi and Jackson 2021). Consequently, deep SOC stocks are less affected
by climate compared to shallow ones (Mathieu et al. 2015). Not only that, but deeper SOC are also
less susceptible to land use land cover change. Studies have shown that carbon loss due to land use
change decreases exponentially with soil depth (Guo and Gifford 2002).

The identification of the SOC-temperature century-steady-state presents both new opportunities
and challenges for SOC dynamic modelling. It highlights the need for long-term data collection to
capture the dynamics and shifts in SOC stocks under changing climate conditions. Moreover, it

Figure 5. The latitudinal shift of breakpoint temperature for different soil layers. (a) The latitudinal mean century temperature
(MCT) and the prediction of the latitudinal mean annual temperature with three emission scenarios by the end of twenty-first
century (2080–2100) based on BCC-CMS2-MR model from CMIP 6. The breakpoint temperatures are −4.3°C, −4.5°C and −3.0°C
for top, transitional and deep soil layer, whose latitudinal shift prediction with different emission scenarios are shown on (b), (c)
and (d) respectively. The blue curve represents the latitudinal mean SOC of different soil layers.
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emphasizes the importance of focusing on the breakpoint temperatures and their potential shifts in
response to ongoing climate warming. For example, we analysed the latitudinal shift of breakpoint
temperature by the end of twenty-first century (2080–2100) for different soil layers with three emis-
sion scenarios based on BCC-CMS2-MR model (Xin et al. 2013). We can see that under the low
emissions scenario, the latitudinal breakpoint line moves very little northwards, whereas in the
high emissions scenario, sizable northern regions with large SOC stocks will warm up above the
breakpoint. (Figure 5, Table 1).

Vulnerable to climate change, SOC may reach a tipping point, releasing massive CO2 into the
atmosphere. Although the temperature breakpoints in this study are not climate tipping points,
especially for deep soils where the SOC response to climate is insensitive and slow, they are remin-
ders of the importance of carbon loss from warming in soil management. The hot areas of land are
likely to experience enhancement (Yi et al. 2014), and the warming is expected to have Arctic
amplification (Serreze and Barry 2011). Understanding these shifts and their implications is crucial
for effectively managing soil carbon stocks in a future with a global climate warmer by 1.5°C or
more.

Taken together, our findings provide valuable insights and open up new avenues for research
and management strategies related to SOC dynamics. By considering the TD-Index and its impli-
cations, future studies can advance our understanding of climate controls on SOC stocks. It could
be used to identify likely future hotspots of SOC loss which could guide experimental measure-
ments, refine SOC modelling approaches, and inform water resource planning strategies for sus-
tainable soil management in different climatic regimes.
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Table 1. The latitude of breakpoint for different soil layers for last century and their prediction for the end of the twenty-first
century (2080–2100) under different emission scenarios based on the BCC-CMS2-MR model and the corresponding increased
vulnerable area for soil organic carbon loss.

Soil layers

Latitude of breakpoint (°N) Increased vulnerable area (106 km2)

Historical SSP 126 SSP 245 SSP 585 SSP 126 SSP 245 SSP 585

Top 60.7 62.5 65.3 69.5 3.6 8.3 12.4
Transitional 60.9 62.7 65.8 69.8 3.5 8.5 12.5
Deep 59.4 60.9 62.7 68.1 2.1 5.6 12.2
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Data availability statement

Long-term temperature and precipitation derived from CRU TS v. 4.04 are publicly available at https://crudata.uea.
ac.uk/cru/data/hrg/cru_ts_4.04/. Long-term radiation data are publicly available at https://psl.noaa.gov/data/
gridded/data.20thC_ReanV3.html. SOC data are publicly available at https://data.isric.org/geonetwork/srv/chi/
catalog.search#/metadata/98062ae9-911d-4e04-80a9-e4b480f87799. The CMIP6 data are publicly available at
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of this study are available from the corresponding author upon reasonable request.
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Appendix

Extended data

Extended data Table A1. AICs of the Boltzmann-Sigmoidal Model (BSM) using three different climate indices for each of the six
soil layers.

Climate indices
Soil layers

0–5 cm 5–15 cm 15–30 cm 30–50 cm 50–100 cm 100–200 cm
TD Index 4.10 × 105 4.84 × 105 5.41 × 105 6.25 × 105 6.57 × 105 7.57 × 105

TP Index 4.23 × 105 4.99 × 105 5.48 × 105 6.28 × 105 6.61 × 105 7.61 × 105

T-Index 4.41 × 105 5.02 × 105 5.50 × 105 6.31 × 105 6.83 × 105 7.560 × 105

Extended data Table A2. Soil organic carbon (SOC) predictions of the Boltzmann-Sigmoidal Model (BSM) using different time
periods.

A1 A2 X0 dx
Period Fast Transitional Slow Fast Transitional Slow Fast Transitional Slow Fast Transitional Slow

10 years 1 136.2 104 753.3 9.63 8.14 65.42 0.564 0.613 0.608 0.108 0.120 0.084
2 136.6 104.2 761.9 9.38 8.02 62.16 0.562 0.611 0.610 0.111 0.122 0.088
3 136.2 103.8 756 9.58 8.13 65.69 0.560 0.609 0.608 0.108 0.120 0.085
4 137 105.1 759.3 9.42 8.03 65.83 0.568 0.620 0.615 0.111 0.124 0.086
5 137.3 105.9 767.8 9.22 7.96 64.25 0.573 0.629 0.625 0.114 0.128 0.090
6 136.8 105.5 771.8 9.44 7.65 62.39 0.567 0.619 0.619 0.109 0.125 0.090
7 136.4 104.4 760.2 9.30 7.64 63.51 0.565 0.614 0.613 0.109 0.123 0.087
8 136.9 104.26 764.01 9.56 8.14 64.51 0.560 0.608 0.605 0.109 0.120 0.086
9 136.5 104.7 761.4 9.78 7.94 64.14 0.557 0.607 0.604 0.108 0.123 0.086
10 137.4 105.9 763.8 9.16 7.59 64.47 0.557 0.609 0.604 0.110 0.125 0.086

20 years 11 136.4 104.1 757.1 9.55 8.17 64.60 0.563 0.613 0.609 0.109 0.120 0.085
12 136.4 104.1 758.7 9.46 8.09 64.23 0.561 0.611 0.609 0.109 0.121 0.086
13 136.6 104.5 758 9.50 8.11 66.04 0.564 0.615 0.612 0.110 0.122 0.085
14 137.2 105.5 763.7 9.35 8.01 65.16 0.570 0.625 0.620 0.112 0.126 0.087
15 137.1 105.7 770 9.35 7.84 63.48 0.570 0.624 0.622 0.111 0.126 0.090
16 136.6 105 766.3 9.36 7.66 63.24 0.566 0.617 0.616 0.109 0.124 0.088
17 136.6 104.4 759 9.40 7.87 64.81 0.562 0.611 0.610 0.109 0.122 0.085
18 136.9 104.6 759.9 9.54 8.00 65.47 0.559 0.608 0.605 0.109 0.122 0.085
19 137 105.4 762.6 9.43 7.76 64.55 0.557 0.608 0.604 0.109 0.124 0.086

30 years 20 136.4 104.1 756.8 9.56 8.18 65.29 0.562 0.612 0.609 0.109 0.120 0.085
21 136.7 104.4 759 9.47 8.12 65.13 0.563 0.614 0.611 0.110 0.122 0.085
22 136.9 105 761.2 9.42 8.07 65.53 0.567 0.620 0.616 0.111 0.124 0.086
23 137.1 105.5 766.6 9.38 7.93 64.50 0.569 0.623 0.620 0.111 0.126 0.088
24 136.9 105.3 766.9 9.33 7.78 63.73 0.568 0.621 0.619 0.111 0.125 0.089
25 136.7 104.8 763.6 9.40 7.81 64.10 0.564 0.614 0.613 0.109 0.123 0.087
26 136.7 104.6 760.3 9.35 7.80 64.43 0.560 0.610 0.608 0.110 0.123 0.086
27 137.1 105.1 761.2 9.40 7.86 65.27 0.558 0.608 0.605 0.110 0.123 0.085

40 years 28 136.6 104.3 757.6 9.54 8.16 65.62 0.564 0.614 0.611 0.109 0.121 0.085
29 136.8 104.8 761.3 9.42 8.09 64.99 0.566 0.618 0.615 0.111 0.123 0.086
30 136.9 105.1 764 9.43 7.99 64.94 0.567 0.620 0.617 0.111 0.124 0.087
31 136.9 105.3 765.1 9.35 7.86 64.44 0.568 0.621 0.618 0.111 0.125 0.088
32 136.9 105 764.7 9.36 7.86 64.23 0.566 0.618 0.616 0.110 0.124 0.087
33 136.8 104.9 763.4 9.31 7.71 63.70 0.562 0.612 0.611 0.110 0.124 0.087
34 136.9 104.9 761.2 9.30 7.75 64.47 0.559 0.609 0.607 0.110 0.123 0.086

50 years 35 136.7 104.7 759.7 9.48 8.13 65.42 0.565 0.617 0.614 0.110 0.122 0.086
36 136.9 105 763.6 9.42 8.01 64.59 0.566 0.618 0.616 0.111 0.124 0.087
37 136.8 105 763.3 9.39 7.92 64.80 0.567 0.619 0.616 0.110 0.124 0.087
38 136.9 105.1 763.7 9.38 7.91 64.69 0.566 0.618 0.616 0.111 0.124 0.087
39 136.9 105.1 764.4 9.28 7.73 63.63 0.564 0.615 0.613 0.110 0.124 0.088
40 136.9 105.1 763.6 9.27 7.69 63.84 0.561 0.611 0.609 0.110 0.124 0.087

60 years 41 136.8 104.8 761.8 9.47 8.06 65.02 0.566 0.617 0.615 0.110 0.123 0.086
42 136.8 104.9 763.1 9.39 7.95 64.49 0.566 0.617 0.615 0.110 0.124 0.087
43 136.8 104.9 762.5 9.41 7.95 64.95 0.565 0.617 0.614 0.110 0.123 0.086
44 136.9 105.1 763.5 9.30 7.78 64.03 0.564 0.616 0.613 0.110 0.124 0.087
45 137 105.2 764.3 9.25 7.71 63.75 0.563 0.614 0.612 0.110 0.125 0.087

70 years 46 136.7 104.8 761.7 9.44 8.00 64.90 0.566 0.617 0.614 0.110 0.123 0.086
47 136.8 104.8 762.4 9.40 7.97 64.68 0.565 0.616 0.614 0.110 0.123 0.087

(Continued )
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Extended data Table A2. Continued.

A1 A2 X0 dx
Period Fast Transitional Slow Fast Transitional Slow Fast Transitional Slow Fast Transitional Slow

48 136.8 104.9 762.5 9.34 7.83 64.35 0.564 0.615 0.613 0.110 0.124 0.087
49 137 105.2 763.6 9.27 7.75 64.03 0.563 0.615 0.612 0.110 0.124 0.087

80 years 50 136.7 104.7 761.2 9.44 8.01 65.02 0.565 0.616 0.613 0.110 0.123 0.086
51 136.8 104.8 762.3 9.35 7.87 64.20 0.564 0.614 0.612 0.110 0.123 0.087
52 136.9 105 762.7 9.31 7.80 64.30 0.563 0.614 0.612 0.110 0.124 0.087

90 years 53 136.7 104.7 761.3 9.39 7.92 64.54 0.564 0.614 0.612 0.110 0.123 0.086
54 136.9 104.9 762.5 9.32 7.83 64.16 0.563 0.614 0.611 0.110 0.124 0.087

100 years 55 136.8 104.8 761.5 9.36 7.88 64.66 0.563 0.614 0.611 0.110 0.123 0.086

Bold numbers are outliers in Extended Data Figure A2.

Extended data Figure A1. Grouping of soil organic carbon (SOC) and TD-Index data into 55 subgroups based on different time
periods over a span of 100 years (1916–2015)
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Extended data Figure A2. Time-scale sensitivity of Boltzmann-Sigmoidal Model (BSM) parameters for three soil layers: fast,
intermediate, and slow. Each point in the figure represents the parameter value of the BSM model for a specific period. The
model was tested using data from 55 different periods to assess its sensitivity to different time scales.
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Extended data Figure A3. Distribution and magnitude of soil organic carbon (SOC) in groups with different TD-Index intervals in
(a) Fast carbon pool (0–15 cm); (b) Transitional carbon pool (15–30 cm); and (c) Slow carbon pool (30–200 cm). Each 0.5°×0.5°
grid point of terrestrial land is divided into a total of 14 groups based on the size of its TD-Index, with each group representing a
0.1 interval. For example, a TD-Index value of 0.05 corresponds to the group within the interval (0, 0.1], while a TD-Index value of
0.15 represents the group within the interval (0.1, 0.2], and so on. N denotes the number of grid cells within each group. The red
dotted line represents the mean SOC for each group, while the green line represents the median SOC.

GEOGRAFISKA ANNALER: SERIES A, PHYSICAL GEOGRAPHY 17



Extended data Figure A4. The global pattern of (A) TD Index, soil organic carbon stock in (B) fast pool (0–15 cm), (C) intermedi-
ate pool (15–30 cm) and (D) slow pool (30–200 cm). TD Index defined as exp (−0.02T−0.8D), Where T (°C) and D are long-term
(1916–2015) annual temperature and dryness. Dryness was defined as Rn/(L*P), where Rn (MJ m−2 yr−1) is annual mean net radi-
ation, P (mm yr−1) is and annual mean precipitation, and L ( = 2.5 MJ kg−1) is the enthalpy of vaporization.
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