Name:

11.

True/False [1 pt each] For each of the following statements, decide whether it is true or false. Put T or F on the answer sheet.

1. Let the universal set be the set of digits $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. If $A = \{4, 3, 6, 7, 1, 9\}$ and $B = \{5, 6, 8, 4\}$ then $\overline{A} \cup B = \{0, 2, 4, 5, 6, 8\}$.

2. If
$$A = \{a, b, c, d, e\}$$
, $B = \{d, e, f\}$ and $C = \{1, 2, 3\}$, then
$$(B - A) \times C = \{(e, 1), (e, 2), (e, 3), (d, 3), (d, 2), (d, 1)\}.$$

3.
$$\{\{\emptyset\}\}\subseteq\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}\}$$

4.
$$|\{x \in \mathbb{Z} : |2x - 1| < 6\}| > |\mathcal{P}(\{2, 6\})|$$

5. For each $n \in \mathbb{N}$, define a set $A_n \subseteq \mathbb{Z}$ by $A_n = \{-n, \ldots, -2, -1, 0, 1, 2, \ldots, n\}$. Then

$$\bigcup_{n\in\mathbb{N}} A_n = \mathbb{Z} \text{ and } \bigcap_{n\in\mathbb{N}} A_n = \{-1,0,1\}.$$

6. Let P and Q be propositions. The propositions $P \Rightarrow Q$ and $(\sim P) \lor Q$ are logically equivalent.

7. If *P* and *Q* are propositions that are true then $(P \vee Q) \wedge \sim (P \wedge Q)$ is also true.

8.
$$\forall x \in \mathbb{Z} \exists y \in \mathbb{Z} (x + y = 0)$$

9.
$$\exists y \in \mathbb{Z} \ \forall x \in \mathbb{Z} \ (x + y = x)$$

10. For all sets A, B, C ($A \subseteq B \land A \subseteq C$) \Rightarrow ($A \cap B = A \cap C$).

Short answer [2 points]

11. Choose one of the true/false problems above and explain why it is true or false. Write your answer clearly and carefully. Neatness counts.