Name:

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11.	

True/False [1 pt each] For each of the following statements, decide whether it is true or false. Put \mathbf{T} or \mathbf{F} on the answer sheet.

1. Let the universal set be the set of digits $U=\{0,1,2,3,4,5,6,7,8,9\}$. If $A=\{4,3,6,7,1,9\}$ and $B=\{5,6,8,4\}$ then $\bar{A} \cup B=\{0,2,4,5,6,8\}$.
2. If $A=\{a, b, c, d, e\}, B=\{d, e, f\}$ and $C=\{1,2,3\}$, then

$$
(B-A) \times C=\{(e, 1),(e, 2),(e, 3),(d, 3),(d, 2),(d, 1)\} .
$$

3. $\{\{\emptyset\}\} \subseteq\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}$
4. $|\{x \in \mathbb{Z}:|2 x-1|<6\}|>|\mathcal{P}(\{2,6\})|$
5. For each $n \in \mathbb{N}$, define a set $A_{n} \subseteq \mathbb{Z}$ by $A_{n}=\{-n, \ldots,-2,-1,0,1,2, \ldots, n\}$. Then

$$
\bigcup_{n \in \mathbb{N}} A_{n}=\mathbb{Z} \text { and } \bigcap_{n \in \mathbb{N}} A_{n}=\{-1,0,1\}
$$

6. Let P and Q be propositions. The propositions $P \Rightarrow Q$ and $(\sim P) \vee Q$ are logically equivalent.
7. If P and Q are propositions that are true then $(P \vee Q) \wedge \sim(P \wedge Q)$ is also true.
8. $\forall x \in \mathbb{Z} \exists y \in \mathbb{Z}(x+y=0)$
9. $\exists y \in \mathbb{Z} \forall x \in \mathbb{Z}(x+y=x)$
10. For all sets $A, B, C(A \subseteq B \wedge A \subseteq C) \Rightarrow(A \cap B=A \cap C)$.

Short answer [2 points]

11. Choose one of the true/false problems above and explain why it is true or false. Write your answer clearly and carefully. Neatness counts.
