Name:

1	
2	
3	
4	
5	
6	
7	
8	

Name:
9.
10.

Matching [1 pt each] How many? The answers (our of order) are:

$$
\text { 15, } 32, \quad 37, \quad 64, \quad 240, \quad 360, \quad 671, \quad 1296
$$

1. How many length-4 lists from symbols A, B, C, D, E, F are possible if repetition is allowed?
2. How many length-4 lists from symbols $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ are possible if repetition is not allowed?
3. How many length-4 lists from symbols A, B, C, D, E, F are possible if repetition is not allowed and the symbol E must appear somewhere in the list?
4. How many length-4 lists from symbols $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ are possible if repetition is allowed and the symbol E must appear at least once in the list?
5. How many subsets of $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}\}$ are there?
6. How many subsets of $\{A, B, C, D, E, F\}$ have four elements?
7. How many subsets of $\{A, B, C, D, E, F\}$ have an E in them?
8. How many subsets of $\{A, B, C, D, E, F\}$ either have an E in them or have four elements?

Mathematical writing [3 pts each] Prove each of the following statements. Write your proofs clearly and carefully on the back of your answer sheet.
9. Suppose $n \in \mathbb{Z}$. Prove that if n^{2} is odd, then n is odd.
10. Prove that if $a, b \in \mathbb{Z}$ then $a^{2}-4 b-3 \neq 0$.

