Name:

| 1 |  |
| :--- | :--- |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |
| 8 |  |

Name:
9.
10.

Matching [1 pt each] How many? The answers (our of order) are:

$$
\text { 15, } 32, \quad 37, \quad 64, \quad 240, \quad 360, \quad 671, \quad 1296
$$

1. How many length-4 lists from symbols $A, B, C, D, E, F$ are possible if repetition is allowed?

Answer. $6^{4}=1296$.
2. How many length-4 lists from symbols A, B, C, D, E, F are possible if repetition is not allowed?

Answer. $6 * 5 * 4 * 3=360$.
3. How many length-4 lists from symbols A, B, C, D, E, F are possible if repetition is not allowed and the symbol $E$ must appear somewhere in the list?

Answer. Think of these lists as coming in 4 types. The first type has an ' $E$ ' in the first position, the second type has an ' $E$ ' in the second position, and so on. For each type, we have choose three letters from the symbols A, B, C, D, F resulting in $5 * 4 * 3=60$ choices for each of the four types. That's $60+60+60+60=240$ lists in total.
4. How many length-4 lists from symbols A, B, C, D, E, F are possible if repetition is allowed and the symbol $E$ must appear at least once in the list?

Answer. There are 1296 lists total. Let's subtract the number of lists that do not have an ' E '. There are $5^{4}=625$ of them. That leaves $1296-625=671$ lists that have an $E$ somewhere in the list.
5. How many subsets of $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}\}$ are there?

Answer. $2^{6}=64$
6. How many subsets of $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}\}$ have four elements?

Answer. $\binom{6}{4}=\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(4 \cdot 3 \cdot 2 \cdot 1)(2 \cdot 1)}=15$.
7. How many subsets of $\{A, B, C, D, E, F\}$ have an $E$ in them?

Answer. Think of listing these sets by listing all the subsets of $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{F}, \mathrm{G}\}$ and then adding an ' E ' to each. The result is $2^{5}=32$ sets.
8. How many subsets of $\{A, B, C, D, E, F\}$ either have an $E$ in them or have four elements?

Answer. First, we count the four element subsets that also have an ' $E$ ' in them. We do that by counting the three element subsets of $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{F}\}$, since addint an ' E ' to these sets results in a four element subset of $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}\}$ with an ' $\mathrm{E}^{\prime}$. There are $\binom{5}{3}=10$ of them.

Now, we use the inclusion-exclusion principle. There are 32 subsets with an ' $E$ '. There are 15 subsets with four elements. There are 10 subsets that both have four elements and contain an ' $E$ '. So, there are $32+15-10=37$ subsets that either have an E in them or have four elements.

Mathematical writing [3 pts each] Prove each of the following statements. Write your proofs clearly and carefully on the back of your answer sheet.
9. Suppose $n \in \mathbb{Z}$. Prove that if $n^{2}$ is odd, then $n$ is odd.

Answer. We will prove the contrapositive. Suppose that $n$ is not odd. This means $n$ is even. This means that $n=2 k$ for some integer $k \in \mathbb{Z}$. Squaring yields $n^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right)$. Let $l$ be the integer $l=2 k^{2}$. We've written $n^{2}=2 l$ for an integer $l \in \mathbb{Z}$, so $n^{2}$ is even, hence $n^{2}$ is not odd.
10. Prove that if $a, b \in \mathbb{Z}$ then $a^{2}-4 b-3 \neq 0$.

Answer. Let's prove this by contradition. Suppose that $a, b \in \mathbb{Z}$ and that $a^{2}-4 b-3=0$. Then we have $a^{2}=4 b+3$. Since $4 b$ is even and 3 is odd, the sum $a^{2}$ is odd. By the proposition above, $a^{2}$ being odd implies $a$ is odd. Therefore $a=2 k+1$ for some integer $k$. Then $a^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1$. Setting this expression for $a^{2}$ equal to $4 b+3$ yields

$$
4 k^{2}+4 k+1=4 b+3 \Rightarrow 4 k^{2}+4 k-4 b=2
$$

This is a contradiction since the left hand side is a multiple of 4 but the right hand side is not.

