Name:

1	
2	
3	
4	
5	
6	
7	

8.

True/False [1 pt each] For each of the following statements, decide whether it is true or false. Put \mathbf{T} or \mathbf{F} on the answer sheet.

1. Let $A=$ \{red square, red octagon, blue triangle, yellow hexagon, blue hexagon\}. Let $P(x, y)$ be the propositional function " x has the same number of sides as y " and let $Q(x, y)$ be the propositional function " x and y have the same color."

$$
\forall x \in A \exists y \in A(\sim P(x, y) \wedge Q(x, y)) \vee(P(x, y) \wedge \sim Q(x, y))
$$

2. For any propositions P, Q, and R, the compound propositions $P \Rightarrow(Q \Rightarrow R)$ and ($P \Rightarrow Q) \Rightarrow R$ are logically equivalent. (Hint: make a truth table.)
3. Thereare $(7)(6)(5)(4)=840$ different injective function $f:\{1,2,3,4\} \rightarrow\{A, B, C, D, E, F, G\}$.
4. If A, B, C are sets, then $A-(B-C)=(A-B)-C$. (Hint: draw a Venn diagram or try an example.)
5. If $f: X \rightarrow Y$ is a function and $A \subseteq X$ then $f^{-1}(f(A))=A$.
6. If $f: X \rightarrow Y$ is an injective function and $A \subseteq X$ then $f^{-1}(f(A))=A$.
7. $2+4+8+16+\cdots+2^{n}=2^{n+1}-2$ for every $n \in \mathbb{N}$.

Short answer [3 points]

8. Choose one of the true/false problems above and explain why it is true or false. Write your answer clearly and carefully. Neatness counts.
