Name:

1	T
2	F
3	F
4	T
5	T
6	F
7	T
8	F
9	T
10	T
11	T
12	T
13	F
14	F
15	T

Part I: True/False [1 pt each]

For each of the following statements, decide whether it is true or false. Put T or F on the answer sheet.

1. $\frac{1}{3+4 i}=\frac{3}{25}-\frac{4}{25} i$.

Answer. True. The expression $\frac{1}{3+4 i}$ means "the number that when multiplied by $3+4 i$ results in $1^{\prime \prime}$. So, you just check

$$
\left(\frac{3}{25}-\frac{4}{25} i\right)(3+4 i)=\frac{9}{25}+\frac{16}{25}+\left(\frac{12}{25}-\frac{12}{25}\right) i=1
$$

2. There is only one number $\alpha \in \mathbb{C}$ so that $\alpha^{3}=1$.

Answer. False. $1^{3}=1$ and $\left(\frac{-1+\sqrt{3} i}{2}\right)^{3}=1$.
3. The set $\{f:[0,1] \rightarrow \mathbb{R}: f$ is one-to-one $\}$ is a subspace of $\mathbb{R}^{[0,1]}$.

Answer. False. The zero function isn't one-to-one.
4. The set $\left\{(a, b, c, d) \in \mathbb{R}^{4}: c=2 a\right\}$ is a subspace of \mathbb{R}^{4}.

Answer. True. Note that $(0,0,0,0)$ is the given set. If (a, b, c, d) satisfies $c=2 a$ and $\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)$ satisfies $c^{\prime}=2 a^{\prime}$ then the sum $\left(a+a^{\prime}, b+b^{\prime}, c+c^{\prime}, d+d^{\prime}\right)$ satisfies $c+c^{\prime}=$ $2 a+2 a^{\prime}=2\left(a+a^{\prime}\right)$, so the set is closed under addition. And if (a, b, c, d) satisfies $c=2 a$ then $\lambda(a, b, c, d)=(\lambda a, \lambda b, \lambda c, \lambda d)$ satisfies $\lambda c=2 \lambda a$ showing the set is closed under scalar multiplication.
5. The list $(1+i, 1+i, 1+i),(1+i, 0,0)$ is independent in \mathbb{C}^{3}.

Answer. True. For a list of two vectors to be dependent, one has to be a multiple of the other, which isn't true here.
6. The vectors $(1,1,1,1,1),(0,1,0,1,0),\left(\frac{1}{2}, 0, \frac{1}{3}, 0, \frac{1}{4}\right),(1,2,3,4,5)$ span \mathbb{R}^{5}.

Answer. False. The dimension of \mathbb{R}^{5} is five. So no list of fewer than five vectors can span \mathbb{R}^{5}.
7. There exist real numbers a, b, c, d, e, f, not all zero, with

$$
\begin{aligned}
& a(1,1,1,1,1)+b(0,1,0,1,0)+c\left(\frac{1}{2}, 0, \frac{1}{3}, 0, \frac{1}{4}\right) \\
& +d(1,2,3,4,5)+e(1,2,9,1,1)+f(-1,-1,-2,-2,-3)=(0,0,0,0,0)
\end{aligned}
$$

Answer. True. This is the statement that the followin list is dependent

$$
(1,1,1,1,1),(0,1,0,1,0),\left(\frac{1}{2}, 0, \frac{1}{3}, 0, \frac{1}{4}\right),(1,2,3,4,5),(1,2,9,1,1),(-1,-1,-2,-2,-3)
$$

which must be true since every list with greater than five vectors in the five dimensional space \mathbb{R}^{5} is dependent.
8. The list of polynomials $(x-1),(x-1)^{2},(x-1)^{3}$ is a basis for $\mathcal{P}_{3}(\mathbb{R})$.

Answer. False. No list of three polynomials can span the four dimensional space $\mathcal{P}_{3}(\mathbb{R})$.
9. The list of polynomials $(x-1),(x-1)^{2},(x-1)^{3}$ is a basis for the space $\left\{p \in \mathcal{P}_{3}(\mathbb{R}): p(1)=0\right\}$.

Answer. True. Since the degrees of these polynomials strictly increases, no polynomial in this list can be a linear combination of the previous ones. So, this list is independent. Since the space in question is a proper subspace of a four dimensional space, the dimension must be at most three. Since we have a list of three independent vectors in a space of dimension at most three, the dimension of that space must be three and the given list must be a basis.

Part II: more True/False [1pt each]

For problems 10-15, consider the following subspaces of \mathbb{R}^{3}

$$
\begin{aligned}
W & =\left\{(0,0, a) \in \mathbb{R}^{3}: a \in \mathbb{R}\right\} \\
X & =\left\{(a, a, a) \in \mathbb{R}^{3}: a \in \mathbb{R}\right\} \\
Y & =\left\{(a, b, c) \in \mathbb{R}^{3}: a+b+c=0\right\} \\
Z & =\left\{(a, a, b) \in \mathbb{R}^{3}: a, b \in \mathbb{R}\right\}
\end{aligned}
$$

10. $(1,1,-2) \in Y \cap Z$

Answer. True. To be in Y, the sum of the entries must be zero. To be in Z, the first two entries must be the same.
11. $W \subseteq Z$

Answer. True. Every vector in W has 0 for the first two entries. Since the first two entries are the same, those vectors are also in Z.
12. $W \cap X=\{(0,0,0)\}$

Answer.
True. If $(a, b, c) \in W$, then $a=b=0$. If $(0,0, c)$ is in X, then $c=0$.
13. $\operatorname{dim}(Y)=1$

Answer. False. $(1,1,-2),(1,0,-1)$ is a linearly independent list in Y, hence $\operatorname{dim}(Y) \geq 2$.
14. $\mathbb{R}^{3}=Y \oplus Z$

Answer. False. Since $(1,1,-2) \in Y \cap Z$, we see $Y \cap Z \neq 0$ so the sum isn't direct.
15. $Z=W \oplus X$

Answer. True. We have $W \cap X=0$. To see that $W+X=Z$, notice that $(a, a, b)=$ $(a, a, a)+(0,0, b-a)$, which expresses an arbitrary element of Z as the sum of a vector in W and a vector in X.

Part III: Short answer [2 points]

16. Choose one of the true/false problems above and explain why it is true or false. Write your answer clearly and carefully. Neatness counts.
