Name:

1	Τ
2	F
3	F
4	Τ
5	Τ
6	F
7	Т
8	F
9	Τ
10	Τ
11	Τ
12	Τ
13	F
14	F
15	Τ

Part I: True/False [1 pt each]

For each of the following statements, decide whether it is true or false. Put **T** or **F** on the answer sheet.

$$1. \ \frac{1}{3+4i} = \frac{3}{25} - \frac{4}{25}i.$$

Answer. True. The expression $\frac{1}{3+4i}$ means "the number that when multiplied by 3+4i results in 1". So, you just check

$$\left(\frac{3}{25} - \frac{4}{25}i\right)(3+4i) = \frac{9}{25} + \frac{16}{25} + \left(\frac{12}{25} - \frac{12}{25}\right)i = 1.$$

2. There is only one number $\alpha \in \mathbb{C}$ so that $\alpha^3 = 1$.

Answer. False. $1^3 = 1$ and $\left(\frac{-1 + \sqrt{3}i}{2}\right)^3 = 1$.

3. The set $\{f : [0,1] \rightarrow \mathbb{R} : f \text{ is one-to-one}\}$ is a subspace of $\mathbb{R}^{[0,1]}$.

Answer. False. The zero function isn't one-to-one.

4. The set $\{(a, b, c, d) \in \mathbb{R}^4 : c = 2a\}$ is a subspace of \mathbb{R}^4 .

Answer. True. Note that (0, 0, 0, 0) is the given set. If (a, b, c, d) satisfies c = 2a and (a', b', c', d') satisfies c' = 2a' then the sum (a + a', b + b', c + c', d + d') satisfies c + c' = 2a + 2a' = 2(a + a'), so the set is closed under addition. And if (a, b, c, d) satisfies c = 2a then $\lambda(a, b, c, d) = (\lambda a, \lambda b, \lambda c, \lambda d)$ satisfies $\lambda c = 2\lambda a$ showing the set is closed under scalar multiplication.

5. The list (1 + i, 1 + i, 1 + i), (1 + i, 0, 0) is independent in \mathbb{C}^3 .

Answer. True. For a list of two vectors to be dependent, one has to be a multiple of the other, which isn't true here.

6. The vectors (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), $(\frac{1}{2}, 0, \frac{1}{3}, 0, \frac{1}{4})$, (1, 2, 3, 4, 5) span \mathbb{R}^5 .

Answer. False. The dimension of \mathbb{R}^5 is five. So no list of fewer than five vectors can span \mathbb{R}^5 .

7. There exist real numbers *a*, *b*, *c*, *d*, *e*, *f*, not all zero, with

$$\begin{split} a(1,1,1,1,1) + b(0,1,0,1,0) + c \left(\frac{1}{2},0,\frac{1}{3},0,\frac{1}{4}\right) \\ &+ d(1,2,3,4,5) + e(1,2,9,1,1) + f(-1,-1,-2,-2,-3) = (0,0,0,0,0). \end{split}$$

Answer. True. This is the statement that the followin list is dependent

$$(1, 1, 1, 1, 1), (0, 1, 0, 1, 0), \left(\frac{1}{2}, 0, \frac{1}{3}, 0, \frac{1}{4}\right), (1, 2, 3, 4, 5), (1, 2, 9, 1, 1), (-1, -1, -2, -2, -3)$$

which must be true since every list with greater than five vectors in the five dimensional space \mathbb{R}^5 is dependent.

8. The list of polynomials (x - 1), $(x - 1)^2$, $(x - 1)^3$ is a basis for $\mathcal{P}_3(\mathbb{R})$.

Answer. False. No list of three polynomials can span the four dimensional space $\mathcal{P}_3(\mathbb{R})$.

9. The list of polynomials (x-1), $(x-1)^2$, $(x-1)^3$ is a basis for the space $\{p \in \mathcal{P}_3(\mathbb{R}) : p(1) = 0\}$.

Answer. True. Since the degrees of these polynomials strictly increases, no polynomial in this list can be a linear combination of the previous ones. So, this list is independent. Since the space in question is a proper subspace of a four dimensional space, the dimension must be at most three. Since we have a list of three independent vectors in a space of dimension at most three, the dimension of that space must be three and the given list must be a basis.

Part II: more True/False [1pt each]

For problems 10–15, consider the following subspaces of \mathbb{R}^3

$$W = \{(0, 0, a) \in \mathbb{R}^3 : a \in \mathbb{R}\}$$

$$X = \{(a, a, a) \in \mathbb{R}^3 : a \in \mathbb{R}\}$$

$$Y = \{(a, b, c) \in \mathbb{R}^3 : a + b + c = 0\}$$

$$Z = \{(a, a, b) \in \mathbb{R}^3 : a, b \in \mathbb{R}\}$$

10. $(1, 1, -2) \in Y \cap Z$

Answer. True. To be in Y, the sum of the entries must be zero. To be in Z, the first two entries must be the same.

11. $W \subseteq Z$

Answer. True. Every vector in *W* has 0 for the first two entries. Since the first two entries are the same, those vectors are also in *Z*.

12. $W \cap X = \{(0, 0, 0)\}$

Answer.

True. If $(a, b, c) \in W$, then a = b = 0. If (0, 0, c) is in *X*, then c = 0.

13. $\dim(Y) = 1$

Answer. False. (1, 1, -2), (1, 0, -1) is a linearly independent list in *Y*, hence dim(*Y*) ≥ 2 .

14. $\mathbb{R}^3 = Y \oplus Z$

Answer. False. Since $(1, 1, -2) \in Y \cap Z$, we see $Y \cap Z \neq 0$ so the sum isn't direct.

15. $Z = W \oplus X$

Answer. True. We have $W \cap X = 0$. To see that W + X = Z, notice that (a, a, b) = (a, a, a) + (0, 0, b - a), which expresses an arbitrary element of Z as the sum of a vector in W and a vector in X.

Part III: Short answer [2 points]

16. Choose one of the true/false problems above and explain why it is true or false. Write your answer clearly and carefully. Neatness counts.