Name:

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Mutliple Choice

1. Which of the following is not a field?
(a) The numbers $\{0,1\}$ with + and \times defined modulo 2
(b) The natural numbers \mathbb{N}
(c) The real numbers \mathbb{R}
(d) The complex numbers \mathbb{C}
2. The multiplicative inverse of $1+i$ is
(a) $\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i$
(b) $1-i$
(c) $\frac{i}{2}$
(d) $\sqrt{2}-\sqrt{2} i$
(e) $\frac{1}{2}-\frac{1}{2} i$
3. Which number satisfies $z^{8}=1$?
(a) $z=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i$
(b) $z=1-i$
(c) $z=\frac{i}{2}$
(d) $z=\sqrt{2}-\sqrt{2} i$
(e) $z=\frac{1}{2}-\frac{1}{2} i$
4. Consider the vector space \mathbb{R}^{4}. Which one of the following subsets is a subspace?
(a) $\left\{(a, b, c, d) \in \mathbb{R}^{4}: a=1\right\}$
(b) $\left\{(a, b, c, d) \in \mathbb{R}^{4}: a+b+c+d=1\right\}$
(c) $\left\{(a, b, c, d) \in \mathbb{R}^{4}: a+2 b=3 c+4 d\right\}$
(d) $\left\{(a, b, c, d) \in \mathbb{R}^{4}: a+b+c \geq d\right\}$
(e) $\left\{(a, b, c, d) \in \mathbb{R}^{4}: a b=c d\right\}$
(f) $\left.\{a, b, c, d,) \in \mathbb{R}^{4}: a^{2}+b^{2}+c^{2}+d^{2}=1\right\}$

True or False

5. The set $\left\{f:[0,1] \rightarrow \mathbb{R}: f\right.$ is integrable and $\left.\int_{0}^{1} f=0\right\}$ is a subspace of $\mathbb{R}^{[0,1]}$.
6. The set $\left\{f:(-1,1) \rightarrow \mathbb{R}: f\right.$ is twice differentiable and $\left.f^{\prime \prime}(0)=2\right\}$ is a subspace of $\mathbb{R}^{(-1,1)}$.
7. The set $\left\{f: \mathbb{R} \rightarrow \mathbb{R}: f^{\prime}(-1)=f(1)\right\}$ is a subspace of $\mathbb{R}^{\mathbb{R}}$.
8. The set of all sequences of real numbers with limit 0 is a subspace of \mathbb{R}^{∞}.
9. If $X=\left\{(a, 2 a, 3 a) \in \mathbb{R}^{3}: a \in \mathbb{R}\right\}$ and $Y=\left\{(a, a, a) \in \mathbb{R}^{3}: a \in \mathbb{R}\right\}$ then $(1,3,5) \in X+Y$.
10. If $X=\left\{(0,0, a) \in \mathbb{R}^{3}: a \in \mathbb{R}\right\}, Y=\left\{(a, a, a) \in \mathbb{R}^{3}: a \in \mathbb{R}\right\}$ and $Z=\left\{(a, a, b) \in \mathbb{R}^{3}\right.$: $a, b \in \mathbb{R}\}$, then $X \oplus Y=Z$.
