13.

Part I: Multiple Choice. 1 point each

1. If A is a $50,000 \times 30$ matrix and B is a $30 \times 50,000$ matrix, then the product AB is a matrix with

- (a) 2.5 billion entries
- (b) 3 million entries
- (c) 1.5 million entries
- (d) 900 entries

2. The matrix $C = \begin{pmatrix} 1 & 2 \\ 4 & -3 \end{pmatrix}$ is invertible. The (2, 1) entry of C^{-1} is

- (a) $\frac{4}{11}$ (b) $\frac{1}{4}$
- (d) 4

(e) -1

3. Let $T \in \mathcal{L}(\mathcal{P}_5(\mathbb{R}), \mathbb{R}^3)$. If you choose bases for $\mathcal{P}_5(\mathbb{R})$ and \mathbb{R}^3 and express T as a matrix $\mathcal{M}(T)$, then how many rows will the matrix $\mathcal{M}(T)$ have?

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) 5

(f) 6

4. Suppose that $S \in \mathcal{L}(\mathbb{R}^3, \mathcal{P}_2(\mathbb{R}))$ and that $S(1,0,0) = x^2 + 2$, $S(0,1,0) = 2x^2 + 4$, and $S(0,0,1) = 2x^2 + 4$. $3x^2 + 6$. Then the dimension of range(S) is

- (a) 0
- (b) 1
- (c) 2
- (d) 3

(e) 4

5. The map $T: \mathcal{P}_5(\mathbb{R}) \to \mathbb{R}^3$ defined by $T(p) = \left(p(0), \int_0^1 p(x) \, dx, p(1)\right)$ is surjective. Which is a basis for null(T)?

- (a) $3x^5 5x^4 + 2x^3$
- (b) $3x^5 5x^4 + 2x^3$, $5x^4 20x^3 + 15x^2$
- (c) $3x^5 5x^4 + 2x^3$, $5x^4 8x^3 + 3x^2$
- (d) $3x^5 5x^4 + 2x^3$, $5x^4 8x^3 + 3x^2$, $3x^5 2x^3 3x^2 + 2x$
- (e) $3x^5 5x^4 + 2x^3$, $5x^4 8x^3 + 3x^2$, $3x^5 2x^3 3x^2 + 2x$, $4x^3 6x^2 + 2x$

6. Let $T: \mathcal{P}_5(\mathbb{R}) \to \mathbb{R}^3$ be the map defined by $T(p) = (p(0), \int_0^1 p(x) dx, p(1))$. Using the basis $1, x, x^2, x^3, x^4, x^5$ for $\mathcal{P}_5(\mathbb{R})$ and the standard basis for \mathbb{R}^3 , the matrix for T is

(a) $\begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 4 & 1 \\ 1 & 5 & 1 \end{pmatrix}$

(c) $\begin{pmatrix} 1 & 1 & 1 \\ 0 & \frac{1}{2} & 1 \\ 0 & \frac{1}{3} & 1 \end{pmatrix}$

(b) $\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 5 & 4 & 3 & 2 & 1 & 0 \\ 0 & 1 & 2 & 3 & 4 & 5 \end{pmatrix}$

(d) $\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$

7. Suppose that $S: \mathbb{R}^3 \to \mathbb{R}^3$ is a linear map and suppose that S(1,0,-5) = (0,0,0). Four of the following statements about *S* are true and one is false. Which one is false?

- (a) *S* is surjective.
- (b) *S* is not injective.
- (c) *S* is not surjective.
- (d) There are numbers $a, b, c \in \mathbb{R}$ so that the equation S(x, y, z) = (a, b, c) has no solution for $(x, y, z) \in \mathbb{R}^3$.
- (e) The equation S(x, y, z) = (0, 0, 0) has infinitely many solutions for $(x, y, z) \in \mathbb{R}^3$.

8. Let $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ be the derivative operator defined by D(p) = p'. One of the following statements about *D* is true and the rest are false. Which is true?

- (a) D is surjective
- (b) D is injective
- (c) D is invertible
- (d) *D* is bijective

9. Consider the derivative operator $D: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ defined by D(p) = p'. Using the basis

$$2x^2 + x + 1$$
, $4x + 1$, 4

for both the domain and codomain to express D as a matrix results in $\mathcal{M}(D)$ =

(a)
$$\begin{pmatrix} 2 & 2 & 1 \\ 0 & 4 & 1 \\ 0 & 0 & 4 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

(c)
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

(a)
$$\begin{pmatrix} 2 & 2 & 1 \\ 0 & 4 & 1 \\ 0 & 0 & 4 \end{pmatrix}$$
 (b) $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ (c) $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ (d) $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$

Part II: True/False. 1 point each

It will be helpful to know that

$$\begin{pmatrix} 1 & 6 & -7 \\ -2 & -5 & 4 \\ -1 & -4 & 4 \end{pmatrix} \begin{pmatrix} 4 & -4 & 11 \\ -4 & 3 & -10 \\ -3 & 2 & -7 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

10. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map defined by

$$T(x, y, z) = (4x - 4y + 11z, -4x + 3y - 10z, -3x + 2y - 7z).$$

The map T is an isomorphism.

11. The system of equations

$$4x - 4y + 11z = \sqrt{5}$$
$$-4x + 3y - 10z = \frac{13}{17}$$
$$-3x + 2y - 7z = -11$$

has a unique solution for $x, y, z \in \mathbb{R}$.

12. The system of homogeneous equations

$$4x - 4y + 11z = 0$$
$$-4x + 3y - 10z = 0$$
$$-3x + 2y - 7z = 0$$

has no nontrivial solutions for x, y, $z \in \mathbb{R}$.

Part III: Short Answer. 3 points

13. Choose one of the previous problems and write a complete justification of your answer.