Name

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

- **1.** The dimension of $\mathcal{P}_2(\mathbb{R})$ is
 - (a) 0 (b) 1 (c) 2 (d) 3 (e) 4 (f) 5

2. True or False: There exist real numbers a, b so that a(-7, 4) + b(5, -2) = (12, 11).

3. Which one of the following lists of vectors is indpendent?

- (a) (2,3,0,4), (4,6,0,8)
- (b) (1,2,3), (0,0,0)
- (c) (1,1,1), (1,0,0), (2,1,1)
- (d) (1,1,1), (1,2,3), (-3,8,1), (3,10,15)
- (e) (0, 2, 0, 4), (0, 2, 0, 5), (1, 2, 3, 4)

4. True or False: If dim(V) = 4 and v_1, v_2, v_3, v_4 is a linearly independent list of four vectors from V then span $(v_1, v_2, v_3, v_4) = V$.

- 5. Which one of the following lists of polynomials is linearly dependent?
 - (a) $1, x, x^3$
 - (b) $1, x, x^2, x^3, x^4, x^5$
 - (c) $x^2 + 2x + 3, x^2 x, 3x^2 + x + 1, 2x^2 + 1$
 - (d) 1 x, 1 + x
 - (e) $5x^2 + 1, x^2 + 1, x^2 + x + 4$

6. Which of the following is a basis for \mathbb{R}^3 ?

- (a) (1,2,0), (0,0,5), (1,0,3), (1,2,3)
- (b) (1, 2, 0), (0, 0, 5), (1, 0, 3)
- (c) (1, 2, 0), (0, 1, 5)
- (d) (1,0,0), (0,0,1), (1,0,1)
- (e) (1,2,3), (4,5,8), (9,6,7), (3,2,8)

- 7. True or False: The vector space $\{f: [0,1] \to \mathbb{R} : f \text{ is continuous}\}$ is infinite dimensional.
- 8. True or False: If a, b, c, d, e, f, g, h, i are real numbers satisfying

a + b + c = 0 d + e + f = 0 g + h + i = 0

then (a, b, c), (d, e, f), (g, h, i) is a list of linearly dependent vectors in \mathbb{R}^3 .

- **9.** Which one of the following sets of polynomials is *not* a subspace of $\mathcal{P}(\mathbb{R})$?
 - (a) {polynomials of degree 3}
 - (b) {polynomials p(x) satisfying p(1) = 0 and p'(1) = 0}
 - (c) {even degree polynomials}
 - (d) {polynomials p(x) with $\int_0^1 p(x)dx = 0$ }
 - (e) {polynomials of degree ≤ 100 }

10. True or False: The list of polynomials $1, (x-5)^2, (x-5)^3$ is a basis for the subspace U of $\mathcal{P}_3(\mathbb{R})$ defined by $U = \{p \in \mathcal{P}_3(\mathbb{R}) : p'(5) = 0\}.$

11. True or False: A list of vectors v_1, \ldots, v_n is a basis for a vector space V if and only if every vector $v \in V$ can be expressed as a unique linear combination of the vectors v_1, \ldots, v_n .

12. Let

$$U = \{p(x) \in \mathcal{P}_4(\mathbb{R}) : p(2) = p(5)\}$$
 and $W = \{p(x) \in \mathcal{P}_4(\mathbb{R}) : p(2) = p(5) = p(6)\}$

Which of the following statements is true:

- (a) U is a subspace of W
- (b) $\dim(U) < \dim(W)$
- (c) $U \oplus W = \mathcal{P}_4(\mathbb{R})$
- (d) $\dim(W) = 3$
- (e) $x^2 7x + 11 \in U \cap W$

13. [2 points] Choose one of the previous problems and give a complete justification of your answer. Write your answer clearly and concisely on the back of the answer sheet. Here's some guidance as to what constitutes a complete justification:

- If you choose a true/false problem that is true, give a proof.
- If you choose a true/false problem that is false, give a counterexample.
- If you choose a multiple choice problem, explain why your answer is correct and why the other choices are wrong.