Name

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

1. The dimension of $\mathcal{P}_{2}(\mathbb{R})$ is
(a) 0
(b) 1
(c) 2
(d) 3
(e) 4
(f) 5
2. True or False: There exist real numbers a, b so that $a(-7,4)+b(5,-2)=(12,11)$.
3. Which one of the following lists of vectors is indpendent?
(a) $(2,3,0,4),(4,6,0,8)$
(b) $(1,2,3),(0,0,0)$
(c) $(1,1,1),(1,0,0),(2,1,1)$
(d) $(1,1,1),(1,2,3),(-3,8,1),(3,10,15)$
(e) $(0,2,0,4),(0,2,0,5),(1,2,3,4)$
4. True or False: If $\operatorname{dim}(V)=4$ and $v_{1}, v_{2}, v_{3}, v_{4}$ is a linearly independent list of four vectors from V then $\operatorname{span}\left(v_{1}, v_{2}, v_{3}, v_{4}\right)=V$.
5. Which one of the following lists of polynomials is linearly dependent?
(a) $1, x, x^{3}$
(b) $1, x, x^{2}, x^{3}, x^{4}, x^{5}$
(c) $x^{2}+2 x+3, x^{2}-x, 3 x^{2}+x+1,2 x^{2}+1$
(d) $1-x, 1+x$
(e) $5 x^{2}+1, x^{2}+1, x^{2}+x+4$
6. Which of the following is a basis for \mathbb{R}^{3} ?
(a) $(1,2,0),(0,0,5),(1,0,3),(1,2,3)$
(b) $(1,2,0),(0,0,5),(1,0,3)$
(c) $(1,2,0),(0,1,5)$
(d) $(1,0,0),(0,0,1),(1,0,1)$
(e) $(1,2,3),(4,5,8),(9,6,7),(3,2,8)$
7. True or False: The vector space $\{f:[0,1] \rightarrow \mathbb{R}: f$ is continuous $\}$ is infinite dimensional.
8. True or False: If $a, b, c, d, e, f, g, h, i$ are real numbers satisfying

$$
a+b+c=0 \quad d+e+f=0 \quad g+h+i=0
$$

then $(a, b, c),(d, e, f),(g, h, i)$ is a list of linearly dependent vectors in \mathbb{R}^{3}.
9. Which one of the following sets of polynomials is not a subspace of $\mathcal{P}(\mathbb{R})$?
(a) \{polynomials of degree 3 \}
(b) \{polynomials $p(x)$ satisfying $p(1)=0$ and $\left.p^{\prime}(1)=0\right\}$
(c) \{even degree polynomials $\}$
(d) \{polynomials $p(x)$ with $\left.\int_{0}^{1} p(x) d x=0\right\}$
(e) \{polynomials of degree $\leq 100\}$
10. True or False: The list of polynomials $1,(x-5)^{2},(x-5)^{3}$ is a basis for the subspace U of $\mathcal{P}_{3}(\mathbb{R})$ defined by $U=\left\{p \in \mathcal{P}_{3}(\mathbb{R}): p^{\prime}(5)=0\right\}$.
11. True or False: A list of vectors v_{1}, \ldots, v_{n} is a basis for a vector space V if and only if every vector $v \in V$ can be expressed as a unique linear combination of the vectors v_{1}, \ldots, v_{n}.
12. Let

$$
U=\left\{p(x) \in \mathcal{P}_{4}(\mathbb{R}): p(2)=p(5)\right\} \text { and } W=\left\{p(x) \in \mathcal{P}_{4}(\mathbb{R}): p(2)=p(5)=p(6)\right\}
$$

Which of the following statements is true:
(a) U is a subspace of W
(b) $\operatorname{dim}(U)<\operatorname{dim}(W)$
(c) $U \oplus W=\mathcal{P}_{4}(\mathbb{R})$
(d) $\operatorname{dim}(W)=3$
(e) $x^{2}-7 x+11 \in U \cap W$
13. [2 points] Choose one of the previous problems and give a complete justification of your answer. Write your answer clearly and concisely on the back of the answer sheet. Here's some guidance as to what constitutes a complete justification:

- If you choose a true/false problem that is true, give a proof.
- If you choose a true/false problem that is false, give a counterexample.
- If you choose a multiple choice problem, explain why your answer is correct and why the other choices are wrong.

