1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
1	

14.

Part I: Multiple Choice. 1 point each

1. Let

$$
A=\left(\begin{array}{ccccc}
3 & 1 & 1 & -1 & -3 \\
0 & -2 & 1 & 0 & -3 \\
-1 & -2 & 2 & -1 & 0 \\
3 & -1 & 1 & 0 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{ccc}
-2 & 0 & -2 \\
2 & 0 & 0 \\
2 & 0 & 0 \\
3 & 3 & -2 \\
-3 & 0 & -2
\end{array}\right)
$$

The $(2,3)$ entry of matrix $A B$ is
(a) -6
(b) -3
(c) 0
(d) 3
(e) 6
2. Using the basis $(x-1),(x-2)$ for $\mathscr{P}_{1}(\mathbb{R})$, the matrix $\mathscr{M}(x-5)$ is
(a) $\left(\frac{9}{2},-4\right)$
(b) $(3,2,1)$
(c) $(-3,4)$
(d) $(1,0,-1)$
(e) $(8,-3)$
3. Consider the linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T(x, y, z)=(x-2 y-2 z, 2 x-6 y-7 z,-4 x+10 y+10 z) .
$$

Using the standard basis for the domain and the standard basis for the codomain, the first row of the matrix for T is
(a) $(1,0,0)$
(b) $(1,2,-4)$
(c) $(5,4,-2)$
(d) $(1,-2,-2)$
(e) $(5,0,1)$
4. Consider the linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T(x, y, z)=(x-2 y-2 z, 2 x-6 y-7 z,-4 x+10 y+10 z)
$$

Using the basis $(5,4,-2),(0,1,-1),\left(1, \frac{3}{2},-1\right)$ for the domain and the standard basis for the codomain, the first row of the matrix for T is
(a) $(1,0,0)$
(b) $(1,2,-4)$
(c) $(5,4,-2)$
(d) $(1,-2,-2)$
(e) $(5,0,1)$

Part II: True/False. 1 point each

5. If $S: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be given by $S(x, y, z)=x+y+z$ then $\operatorname{null}(S)=\operatorname{span}((5,-3,-2),(0,3,-3))$.
6. The linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y, z)=(x+y, z, x+y-z)$ is surjective.
7. The linear map $T: \mathscr{P}_{1}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ defined by $T(p(x))=(p(1), p(2), p(3))$ is surjective.
8. Let $T: \mathscr{P}_{1}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ be the linear map defined by

$$
T(p(x))=(p(1), p(2), p(3)) .
$$

Using the basis $(x-1),(x-2)$ for $\mathscr{P}_{1}(\mathbb{R})$ and the standard basis is used for \mathbb{R}^{3}, the matrix equation $\mathscr{M}(T) \mathscr{M}(x-5)=\mathscr{M}(T(x-5))$ is the equation

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0 \\
2 & 1
\end{array}\right)\binom{-3}{4}=\left(\begin{array}{l}
-4 \\
-3 \\
-2
\end{array}\right)
$$

9. The follow homogeneous system of equations has infinitely many solutions:

$$
\begin{array}{r}
x-2 y-2 z=0 \\
2 x-6 y-7 z=0 \\
-4 x+10 y+10 z=0
\end{array}
$$

10. The follow inhomogeneous system of equations has exactly one solution:

$$
\begin{aligned}
x-2 y-2 z & =\frac{1}{5} \\
2 x-6 y-7 z & =-17 \\
-4 x+10 y+10 z & =9
\end{aligned}
$$

11. There is a linear map $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ with

$$
\operatorname{null}(T)=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbb{R}^{5}: x_{1}=3 x_{2} \text { and } x_{3}=x_{4}=x_{5}\right\}
$$

12. Suppose $T: V \rightarrow W$. If v_{1}, \ldots, v_{n} is independent in V, then $T v_{1}, \ldots, T v_{n}$ is independent in W.
13. Suppose $T: V \rightarrow W$. If v_{1}, \ldots, v_{n} spans V, then $T v_{1}, \ldots, T v_{n}$ spans the $\operatorname{range}(T)$.

Part III: Short Answer. 3 points

14. Choose one of the True / False problems and write a complete justification of your answer.
