1	E
2	C
3	D
4	A
5	T
6	F
7	F
8	T
9	F
10	T
11	F
12	F
13	T
14.	

Part I: Multiple Choice. 1 point each

1. Let

$$
A=\left(\begin{array}{ccccc}
3 & 1 & 1 & -1 & -3 \\
0 & -2 & 1 & 0 & -3 \\
-1 & -2 & 2 & -1 & 0 \\
3 & -1 & 1 & 0 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{ccc}
-2 & 0 & -2 \\
2 & 0 & 0 \\
2 & 0 & 0 \\
3 & 3 & -2 \\
-3 & 0 & -2
\end{array}\right) .
$$

The $(2,3)$ entry of matrix $A B$ is
(a) -6
(b) -3
(c) 0
(d) 3
(e) 6

Answer. The answer is 6 , which you can find by multiplying the second row of A by the third column of B.
For the record $A B=\left(\begin{array}{ccc}4 & -3 & 2 \\ 7 & 0 & 6 \\ -1 & -3 & 4 \\ -9 & 0 & -8\end{array}\right)$.
2. Using the basis $(x-1),(x-2)$ for $\mathscr{P}_{1}(\mathbb{R})$, the matrix $\mathscr{M}(x-5)$ is
(a) $\left(\frac{9}{2},-4\right)$
(b) $(3,2,1)$
(c) $(-3,4)$
(d) $(1,0,-1)$
(e) $(8,-3)$

Answer. The answer is $(-3,4)$ since $-3(x-1)+4(x-2)=x-5$.
3. Consider the linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T(x, y, z)=(x-2 y-2 z, 2 x-6 y-7 z,-4 x+10 y+10 z) .
$$

Using the standard basis for the domain and the standard basis for the codomain, the first row of the matrix for T is
(a) $(1,0,0)$
(b) $(1,2,-4)$
(c) $(5,4,-2)$
(d) $(1,-2,-2)$
(e) $(5,0,1)$

Answer. To be complete, we find the entire matrix for T. To do that, apply T to each of the standard basis of \mathbb{R}^{3}

$$
\begin{aligned}
& T(1,0,0)=(1,2,-4)=1(1,0,0)+2(0,1,0)-4(0,0,1) \\
& T(0,1,0)=(-2,-6,10)=-2(1,0,0)+-6(0,1,0)+10(0,0,1) \\
& T(0,0,1)=(-2,-7,10)=-2(1,0,0)+-7(0,1,0)+10(0,0,1)
\end{aligned}
$$

and use the coeffcients of the result for the columns of the matrix: $\left(\begin{array}{ccc}1 & -2 & -2 \\ 2 & -6 & -7 \\ -4 & 10 & 10\end{array}\right)$.
4. Consider the linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T(x, y, z)=(x-2 y-2 z, 2 x-6 y-7 z,-4 x+10 y+10 z) .
$$

Using the basis $(5,4,-2),(0,1,-1),\left(1, \frac{3}{2},-1\right)$ for the domain and the standard basis for the codomain, the first row of the matrix for T is
(a) $(1,0,0)$
(b) $(1,2,-4)$
(c) $(5,4,-2)$
(d) $(1,-2,-2)$
(e) $(5,0,1)$

Answer. To be complete, we find the entire matrix for T. To do that, apply T to each of the vectors in the given basis

$$
\begin{aligned}
T(5,4,-2) & =(1,0,0)=1(1,0,0)+0(0,1,0)+0(0,0,1) \\
T(0,1,-1) & =(0,1,0)=-0(1,0,0)+1(0,1,0)+0(0,0,1) \\
T(1,3 / 2,-1) & =(0,0,1)=0(1,0,0)+0(0,1,0)+1(0,0,1)
\end{aligned}
$$

and use the coeffcients of the result for the columns of the matrix: $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.

Part II: True/False. 1 point each

5. If $S: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be given by $S(x, y, z)=x+y+z$ then $\operatorname{null}(S)=\operatorname{span}((5,-3,-2),(0,3,-3))$.

Answer. True. Since S is a nonzero map to \mathbb{R}, the range is 1 dimensional. Therefore, the nullspace is two dimensional. The two vectors $(5,-3,-2),(0,3,-3)$ are two linearly independent vectors in the two dimensional nullspace, hence must be a basis, hence must span the nullspace.
6. The linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y, z)=(x+y, z, x+y-z)$ is surjective.

Answer. False. Note that $T(1,-1,0)=(0,0,0)$, so null (T) has dimension at least 1 , so range (T) has dimension at most 2.
7. The linear map $T: \mathscr{P}_{1}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ defined by $T(p(x))=(p(1), p(2), p(3))$ is surjective.

Answer. False. Since the domain is two dimensional, the range can have dimension at most two.
8. Let $T: \mathscr{P}_{1}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ be the linear map defined by

$$
T(p(x))=(p(1), p(2), p(3)) .
$$

Using the basis $(x-1),(x-2)$ for $\mathscr{P}_{1}(\mathbb{R})$ and the standard basis is used for \mathbb{R}^{3}, the matrix equation $\mathscr{M}(T) \mathscr{M}(x-5)=\mathscr{M}(T(x-5))$ is the equation

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0 \\
2 & 1
\end{array}\right)\binom{-3}{4}=\left(\begin{array}{l}
-4 \\
-3 \\
-2
\end{array}\right)
$$

Answer. True. We know from problem 3 that $\mathscr{M}(x-5)=\binom{-3}{4}$ To see that the matrix $\mathscr{M}(T)$ is correct, apply T to each of the given basis vectors of $\mathscr{P}_{1}(\mathbb{R})$

$$
\begin{aligned}
& T(x-1)=(0,1,2)=0(1,0,0)+1(0,1,0)+2(0,0,1) \\
& T(x-2)=(-1,0,1)=-1(1,0,0)+0(0,1,0)+1(0,0,1)
\end{aligned}
$$

Finally, note that the matrix multiplcation is correct and that the righthand side is the vector for $T(x-5)=$ $(-4,-3,-2)=-4(1,0,0)+-3(0,1,0)-2(0,0,1)$ in the standard basis of \mathbb{R}^{3}.
9. The follow homogeneous system of equations has infinitely many solutions:

$$
\begin{aligned}
x-2 y-2 z & =0 \\
2 x-6 y-7 z & =0 \\
-4 x+10 y+10 z & =0
\end{aligned}
$$

Answer. False. Note that the given statement is equivalent to the statement that there are infinitely many vectors in the nullspace of the linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
T(x, y, z)=(x-2 y-2 z, 2 x-6 y-7 z,-4 x+10 y+10 z) .
$$

Since $(1,0,0),(0,1,0),(0,0,1)$ are all in the range of T, the range of T must be at least three, hence three, dimensional. Therefore (T) is zero dimensional. Therefore, there is only one solution to the given systemthe trivial solution $(x, y, z)=(0,0,0)$.
10. The follow inhomogeneous system of equations has exactly one solution:

$$
\begin{aligned}
x-2 y-2 z & =\frac{1}{5} \\
2 x-6 y-7 z & =-17 \\
-4 x+10 y+10 z & =9
\end{aligned}
$$

Answer. True. Since the linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
T(x, y, z)=(x-2 y-2 z, 2 x-6 y-7 z,-4 x+10 y+10 z)
$$

is surjective, there is a solution to the given system. Since the linear map T is injective, there is only one solution.
11. There is a linear map $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ with

$$
\operatorname{null}(T)=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbb{R}^{5}: x_{1}=3 x_{2} \text { and } x_{3}=x_{4}=x_{5}\right\}
$$

Answer. False. Note that the given space is two dimensional (it is spanned by ($3,1,0,0,0$), $(0,0,1,1,1)$). If there existed a linear map with the given subspace as a nullspace, then it would have a three dimensional range, impossible for a map with the two dimensional codomain \mathbb{R}^{2}.
12. Suppose $T: V \rightarrow W$. If v_{1}, \ldots, v_{n} is independent in V, then $T v_{1}, \ldots, T v_{n}$ is independent in W.

Answer. False. For example, if $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is zero map and v_{1}, v_{2} is the independent list $(1,0,0),(0,1,0)$, $T v_{1}, T v_{2}$ is the dependent list $(0,0,0),(0,0,0)$.
13. Suppose $T: V \rightarrow W$. If v_{1}, \ldots, v_{n} spans V, then $T v_{1}, \ldots, T v_{n}$ spans the range (T).

Answer. True. Every vector in range (T) has the form $T v$ for some $v \in V$. If v_{1}, \ldots, v_{n} spans V, then there exist scalars a_{1}, \ldots, a_{n} so that $v=a_{1} v_{1}+\cdots+a_{n} v_{n}$. Then $T v=a_{1} T v_{1}+\cdots a_{n} T v_{n}$ and we see $T v$ is in the span of $T v_{1}, \ldots, T v_{n}$.

Part III: Short Answer. 3 points

14. Choose one of the True / False problems and write a complete justification of your answer.
