Part I: Multiple Choice [1 point each]

1. One of the following lists is linearly independent. Which one?

(b)
$$1 + x + x^2 + 4x^3$$
, $2 + 2x + 2x^2 + 8x^3$

(c)
$$(1,2,3,4)$$
, $(0,0,0,1)$, $(1,2,3,5)$

(d)
$$1 + x^6$$
, $1 - x^5$, $1 + x^2 - x^3$, $1 + x$

(e)
$$1 + x + x^2$$
, $4 - x^2$, $x + x^2$, $6 - x$

2. Let $T : \mathcal{P}_4(\mathbb{R}) \to \mathbb{R}^4$ be the linear map defined by T(p) = (p(0), p(1), p(2), p(3)). Which is a basis for null(T)?

(a)
$$x(x-1)(x-2)(x-3)$$

(b)
$$2x^4 - 12x^3 + 22x^2 - 12x$$
, $2x^5 - 12x^4 + 22x^3 - 12x^2$

(c)
$$x^3 - 6x^2 + 11x - 6$$

(d)
$$x^3 - 3x^2 + 2x$$
, $x^3 - 4x^2 + 3x$, $x^3 - 6x^2 + 11x - 6$

(e)
$$x^3 - 3x^2 + 2x$$
, $x^3 - 4x^2 + 3x$

3. Which statement about the matrix $A = \begin{pmatrix} 3 & -1 & 5 & 0 \\ 0 & 0 & 5 & 6 \\ 0 & 0 & 2 & -3 \\ 0 & 0 & 0 & 4 \end{pmatrix}$ is true?

- (a) There exists a basis of \mathbb{R}^4 consisting of eigenvectors for A.
- (b) The nullspace of \boldsymbol{A} is trivial.
- (c) The matrix A is invertible.
- (d) -1 is an eigenvalue for A
- (e) $\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ is an eigenvector for A

- **4.** Which of the following vectors are *not* eigenvectors for the matrix $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$?
- (b) $\begin{pmatrix} -1\\1\\0 \end{pmatrix}$ (c) $\begin{pmatrix} -1\\0\\1 \end{pmatrix}$ (d) $\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$ (e) $\begin{pmatrix} 0\\1\\0 \end{pmatrix}$

- **5.** Which statement about the operator $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ defined by D(p) = p' is false?
 - (a) *D* is surjective
 - (b) 0 is an eigenvalue for *D*
 - (c) *D* is injective
 - (d) $\mathcal{P}_2(\mathbb{R})$ is an invariant subspace for D
 - (e) $null(D) \subseteq range(D)$

Part II: True or False [1 point each]

- **6.** The matrix $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ is invertible.
- 7. The map $T: \mathcal{P}_3(\mathbb{R}) \to \mathbb{R}^4$ defined by T(p) = (p(0), p(1), p(2), p(3)) is invertible.
- **8.** For any numbers a, b, c, the system of equations y + z = a, x + z = b, x + y = c has a unique solution $(x, y, z) \in \mathbb{R}^3$.
- **9.** If $T: V \to V$ is a linear operator on a vector space V then $V = \text{null}(T) \oplus \text{range}(T)$.
- **10.** If a matrix *A* satisfies $A^2 = I$ then A = I or A = -I.

Part III: Short Answer [2 points]

11. Choose one of the true/false problems above and explain your answer. Write your explanation clearly and concisely.

Part IV: Compute [2 points]. Show your work.

12. Find the eigenvalues of the matrix $\begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix}$.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

11.

12.