Name

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	

15.

Multiple Choice: 1 point each

1. Let $T : \mathscr{P}_2(\mathbb{R}) \to \mathscr{P}_2(\mathbb{R})$ be defined by $T(p) = p(1)x^2 + p'(0)x + p''(0)$. Let $\mathscr{M}(T)$ be the matrix for T using the basis $1 + x^2, 2 - x^2, 2 - 2x + x^2$. The (2,2) entry of $\mathscr{M}(T)$ is

(a) -2 (b) -1 (c) 0 (d) 1 (e) 2

2. Which of the following statements about the linear operator $T : \mathscr{P}_2(\mathbb{R}) \to \mathscr{P}_2(\mathbb{R})$ defined by $T(p) = p(1)x^2 + p'(0)x + p''(0)$ is false?

- (a) There is a basis of $\mathscr{P}_2(\mathbb{R})$ consisting of eigenvectors for *T*.
- (b) *T* is invertible
- (c) The nullspace of T is one-dimensional.
- (d) T has three distinct eigenvalues.
- (e) $1 + x^2$ is an eigenvector for T with eigenvalue 2

3. For what two values of x is
$$\begin{pmatrix} 5 \\ x \end{pmatrix}$$
 an eigenvector for $\begin{pmatrix} -14 & 5 \\ -24 & 9 \end{pmatrix}$?
(a) 1 and 6 (b) -3 and 4 (c) 5 and -2 (d) 7 and -2 (e) 8 and 15
4. The (1,1) entry of $\begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}^{-1}$ is

(a) -3 (b) $-\frac{5}{2}$ (c) -2 (d) -1 (e) 3

5. Let *V* be a *n*-dimensional vector space and let $T \in \mathcal{L}(V)$. Which of the following statements is not equivalent to the others?

- (a) V has a basis of eigenvectors for T.
- (b) There is a basis for V in which the matrix for T is diagonal.
- (c) T has n distinct eigenvalues.

6. Let *V* be a *n*-dimensional vector space and let $T \in \mathscr{L}(V)$. Which of the following statements is not equivalent to the others?

- (a) $\operatorname{null}(T \lambda \operatorname{Id}) = \{0\}.$
- (b) λ is an eigenvalue for *T*.
- (c) $T \lambda$ Id is not injective.
- (d) $T \lambda$ Id is not surjective.
- (e) $T \lambda$ Id is not bijective.
- (f) $T \lambda$ Id is not invertible.

7. Let *V* be an *n*-dimensional vector space and let $T \in \mathscr{L}(V)$. Which of the following statements is not equivalent to the others?

- (a) $null(T) = \{0\}.$
- (b) *T* is invertible.
- (c) range(T) = V.
- (d) For any $y \in V$ there exists a unique $x \in V$ with Tx = y.
- (e) Tv_1, \ldots, Tv_n is a basis for V whenever v_1, \ldots, v_n is a basis of V.
- (f) V has a basis of eigenvectors for T.

8. Consider the backward shift map $S : \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$ defined by $S(a_1, a_2, a_3, \ldots) = (a_2, a_3, \ldots)$. Which of the following statements about *S* is false?

- (a) S is surjective.
- (b) *S* is injective.
- (c) 0 is an eigenvalue for S.
- (d) 1 is an eigenvalue for *S*.
- (e) (1, 1, 1, ...) is an eigenvector for *S*.

True or False: 1 point each

9. There exists a linear map $T : \mathbb{R}^5 \to \mathbb{R}^3$ with $\text{null}(T) = \{(x, 2x, 3x, 4x, 5x) : x \in \mathbb{R}\}.$

10. If $S, T \in \mathscr{L}(V)$ and ST = TS then null(S) is an invariant subspace for T.

11.
$$\mathbb{R}^{\mathbb{R}} = U \oplus W$$
 where $U = \{ f \in \mathbb{R}^{\mathbb{R}} : f(x) = f(-x) \}$ and $W = \{ f \in \mathbb{R}^{\mathbb{R}} : f(x) = -f(-x) \}.$

12. $x, 3x^2 - 1, x^3$ is a basis for the nullspace of $I : \mathscr{P}_3(\mathbb{R}) \to \mathbb{R}$ defined by $I(p) = \int_{-1}^1 p(x) dx$.

13. $(x-2)^2$ divides $4-8x+5x^2+7x^3-4x^4-2x^5+x^6$.

14. span ((1,2,-2),(2,3,-5)) is an invariant subspace of $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x,y,z) = (12x+5z,7x+3y+5z,-33x+y-13z).

Part III: Short Answer. 2 points

15. Choose one of the true false problems and write a complete justification of your answer.