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Math 231 Final Exam Answers Fall 2015

Part I: Multiple Choice. 1 point each

1. (b) Note that T (1+ x2) = 2+2x2 = 2(1+ x2), T (2− x2) =−2+ x2 =−1(2− x2) and T (2−2x+ x2) =
2−2x+ x2. Therefore, the matrix for T using the given basis is

M (T ) =

2 0 0
0 −1 0
0 0 1

 .

The (2,2) entry is −1.

2. (c) is False. From the previous problem, we see that the polynomials in the given basis are eigenvectors
for T with eigenvalues 2,−1,1, in particular 1+ x2 corresponds to the eigenvalue 2. Thus (a), (d), and (e)
are true. Moreover, none of the eigenvalues are zero so T is invertible and we see that (b) is true.

3. (e) is the answer. We solve the problem in two steps. The first step is to find the eigenvalues for the given

matrix. λ is an eigenvalue for
(
−14 5
−24 9

)
if and only if

(
−14−λ 5
−24 9−λ

)
is not invertible if and only if

(−14−λ )(9−λ )− (−24)(5) = 0 if and only if λ 2 +5λ −6 = 0 if and only if λ =−6 or λ = 1.
Once we know that −6,1 are the eigenvalues, the next step is:(

−14 5
−24 9

)(
5
x

)
= 1

(
5
x

)
⇔
(

5x−70
9x−120

)
=

(
5
x

)
⇒ x = 15

and (
−14 5
−24 9

)(
5
x

)
=−6

(
5
x

)
⇔
(

5x−70
9x−120

)
=

(
−30
−6x

)
⇒ x = 8.

4. (b) (
−2 3
4 5

)−1

=

(
−5

2
3
2

2 −1

)
and we see the (1,1) entry is −5

2 .

5. (c) is the answer. Statements (a) and (b) are equivalent. Statement (c) implies (a) and (b), but it’s not
equivalent since it’s possible to have a basis of eigenvectors with the same eigenvalue (eg: the identity map
on R3.)

6. (a) If null(T −λ id) = {0} then there are no nonzero vectors v with (T −λ id)v = 0 which means that λ

is not an eigenvalue for T .



Math 231 Final Exam Answers Fall 2015

7. (f) is the answer. It’s possible to have a basis of V consisting of eigenvectors for a non-invertible operator
T : V → V . For example, (1,0),(0,1) is a basis of eigenvectors for the operator T : R2 → R2 given by
T (x,y) = (x,0), but T is not invertible.

To see why the others are equivalent, note that if dim(V ) = n and T : V → V , then dim(range(T ))+
dim(null(T )) = n. Thus, T is injective ⇔ null(T ) = {0} ⇔ dim(null(T )) = 0⇔ dim(range(T )) = n⇔
range(T ) =V ⇔ T is surjective. Together, injective and surjective mean bijective which is statement (d) and
bijective is also equivalent to invertible which is statement (b). Finally, to see that (e) is equivalent, note that
if T v1, . . . ,T vn is a basis of V then it spans, hence T is surjective hence and conversely if T is surjective and
v1, . . . ,vn is a basis for V , then T v1, . . . ,T vn must span V and a spanning set of the right size must be a basis.

8. (b) is false since S maps both (1,1,1, . . .) and (2,1,1, . . .) to the same sequence. The other statements
are true. Note that S(1,1,1 . . .) = (1,1, . . .) so (1,1,1 . . .) is an eigenvector with eigenvalue 1 so (d) and
(e) are true. Also since S is not injective, there’s a nonzero vector in the nullspace, which means that 0 is
an eigenvalue for S so (c) is true. To see that (a) is true, note that if (a1,a2, . . .) is any sequence in R∞,
S(1,a1,a2, . . .) = (a1,a2, . . .), so S is surjective. This problem contrasts with the previous two problems. For
operators on finite dimensional spaces, surjective and injective are equivalent, but not so for operators on
infinite dimensional spaces.

9. False. Note that {(x,2x,3x,4x,5x) : x ∈R}= span((1,2,3,4,5)) is one-dimensional. If T : R5→R3 is a
linear map, the dimension of range(T )≤ 3 hence the dimension of null(T )≥ 2.

10. True. To see this, suppose v ∈ null(S). We need to check if T v is again in null(S). So, apply S to T v
to get (T v) = T (Sv) = T (0) = 0, as needed for T v to be in null(S). The first equal sign is because S and T
commute, the second is because v ∈ null(S) and the third is because linear maps always map 0 to 0.

11. True. To prove that RR = U ⊕V , let f ∈ RR be any function. Write f as f = g+ h where g(x) =
f (x)+ f (−x) and h(x) = f (x)− f (−x). Note that g ∈U and h ∈W . This shows RR =U +W . To see that
the sum is direct, notice that if f ∈U ∩W then f (−x) = f (x) =− f (x)⇒ f (x) = 0 so U ∩W = {0}.

12. True. First, since P3(R) is four dimensional, and I is not the zero map, the nullspace of I is at most
three dimensional. A quick check shows that all three polynomials are in the nullspace of I (both x and x3

are odd and it’s easy to compute
∫ 1
−1 3x2−1 = 0). These three polynomials are independent since they have

different degree. Hence, the three polynomials given must be a basis.

13. True. Let p(x) = 4− 8x+ 5x2 + 7x3− 4x4− 2x5 + x6. Note that p′(x) = 6x5− 10x4− 16x3 + 21x2 +
10x−8 and both p(2) = 0 and p′(2) = 0. Hence (x−2)2 must divide p(x) and p′(x).

14. True. Note that T (1,2,−2)= (2,3,5) and T (2,3,5)= (−1,−2,2)=−(1,2,−2). So, yes, span((1,2,−2),(2,3,5))
is an invariant subspace for T .


