1. Prove: If some vector in a list of vectors in a vector space V is a linear combination of the other vectors, then the list is linearly dependent.

- **2.** Does (1, 2, 3, -5), (4, 5, 8, 3), (9, 6, 7, -1) span \mathbb{R}^4 ? Explain.
- **3.** Is the list (1, 2, 3), (4, 5, 8), (9, 6, 7), (-3, 2, 8) linearly independent in \mathbb{R}^3 ? Explain.
- **4.** Prove that F^{∞} is infinite-dimensional.

5. Suppose that p_1, p_2, p_3, p_4, p_5 is a list polynomials in $\mathcal{P}_4(\mathbb{R})$ that all vanish at x = 3. Prove that p_1, p_2, p_3, p_4, p_5 is linearly dependent.

6. Suppose that v_1, v_2, v_3 is a basis for a vector space V. Prove or disprove $v_1 + v_2, v_1 - v_2, v_3$ is also a basis for V.

- 7. Let $U = \{(a, b, c) \in \mathbb{R}^3 : a + b + c = 0\}.$
 - (a) Find a basis for U.
 - (b) Extend your basis to a basis of \mathbb{R}^3 .
 - (c) Find a subspace W of \mathbb{R}^3 so that $\mathbb{R}^3 = U \oplus W$.
- 8. Let $U = \{ p \in \mathcal{P}_4(\mathbb{R}) : p(2) = p(5) \}.$
 - (a) Find a basis for U.
 - (b) Extend your basis to a basis of $\mathcal{P}_4(\mathbb{R})$
 - (c) Find a subspace W of $\mathcal{P}_4(\mathbb{R})$ so that $\mathcal{P}_4(\mathbb{R}) = U \oplus W$.
- **9.** Let $U = \{ p \in \mathcal{P}_4(\mathbb{R}) : \int_{-1}^1 p = 0 \}.$
 - (a) Find a basis for U.
 - (b) Extend your basis to a basis of $\mathcal{P}_4(\mathbb{R})$
 - (c) Find a subspace W of $\mathcal{P}_4(\mathbb{R})$ so that $\mathcal{P}_4(\mathbb{R}) = U \oplus W$.

10. Prove that any two three dimensional subspaces of \mathbb{R}^5 must have a nonzero vector in their intersection.