1. Prove: If some vector in a list of vectors in a vector space V is a linear combination of the other vectors, then the list is linearly dependent.

Answer. Suppose that $v_k = \lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n$. Subtracting v_k from both sides gives $0 = \lambda_1 v_1 + \lambda_2 v_2 + \cdots + (-1)v_k + \cdots + \lambda_n v_n$ proving that v_1, \ldots, v_n is dependent.

2. Does (1, 2, 3, -5), (4, 5, 8, 3), (9, 6, 7, -1) span \mathbb{R}^4 ? Explain.

Answer. No. Since \mathbb{R}^4 is four dimensional, no set with fewer than four vectors can span \mathbb{R}^4 .

3. Is the list (1, 2, 3), (4, 5, 8), (9, 6, 7), (-3, 2, 8) linearly independent in \mathbb{R}^3 ? Explain.

Answer. No. Since \mathbb{R}^3 is three dimensional, no set with greater than three vectors can be independent.

4. Prove that F^{∞} is infinite-dimensional.

Answer. In any finite dimensional vector space, if a list of vectors is longer than the dimension, the list is dependent. Since the following list is independent in F^{∞} : (1, 0, 0, 0, ...), (0, 1, 0, 0, ...), ..., (0, 0, ..., 0, 1, 0, ...)—and I can make this list as long as I like—the dimension of F^{∞} cannot be finite.

5. Suppose that p_1, p_2, p_3, p_4, p_5 is a list polynomials in $\mathcal{P}_4(\mathbb{R})$ that all vanish at x = 3. Prove that p_1, p_2, p_3, p_4, p_5 is linearly dependent.

Answer. The space U of polynomials that vanish at x = 3 is a proper subspace of the 5 dimensional space of all polynomials in $\mathcal{P}_4(\mathbb{R})$. Therefore, U has dimension at most 4. So, any list of 5 or more polynomials in this space must be dependent.

6. Suppose that v_1, v_2, v_3 is a basis for a vector space V. Prove or disprove $v_1 + v_2, v_1 - v_2, v_3$ is also a basis for V.

Answer. If v_1, v_2, v_3 is a basis for *V*, then *V* is three-dimensional, so it suffices to check whether the list $v_1 + v_2, v_1 - v_2, v_3$ spans *V*. Note that $v_1 = \frac{1}{2}(v_1 + v_2) - \frac{1}{2}(v_1 - v_2)$ and $v_2 = \frac{1}{2}(v_1 + v_2) + \frac{1}{2}(v_1 - v_2)$. So, v_1, v_2, v_3 are in the span of $v_1 + v_2, v_1 - v_2, v_3$, and we conclude the list $v_1 + v_2, v_1 - v_2, v_3$ spans *V*.

- 7. Let $U = \{(a, b, c) \in \mathbb{R}^3 : a + b + c = 0\}.$
 - (a) Find a basis for U.

Answer. As a proper subspace of \mathbb{R}^3 , the dimension of U is at most 2. The vectors (1,0,-1), (0,1,-1) are an independent list in U, hence are a basis.

(b) Extend your basis to a basis of \mathbb{R}^3 .

Answer. Adding any vector not in U works. For example, (1, 0, -1), (0, 1, -1), (1, 0, 0)

(c) Find a subspace W of \mathbb{R}^3 so that $\mathbb{R}^3 = U \oplus W$.

Answer. Let W be the span of (1, 0, 0).

8. Let $U = \{ p \in \mathcal{P}_4(\mathbb{R}) : p(2) = p(5) \}.$

(a) Find a basis for U.

Answer. Notice that since U is a proper subspace of the five dimensional space $\mathcal{P}_4(\mathbb{R})$, we know the dimension of U is at most 4. Here's an independent list of four polynomials in U:

$$1, (x-2)(x-5), (x-2)^2(x-5), (x-2)^2(x-5)^2$$

and so it is a basis for U. To see that the list is independent, note that no polynomial in this list can be a linear combination of the previous polynomials since the degree of each polynomial is strictly greater than the degrees of the polynomials that preceed it.

(b) Extend your basis to a basis of $\mathcal{P}_4(\mathbb{R})$

Answer. It suffices to add any polynomial not in U. For example x works. So

$$1, (x-2)(x-5), (x-2)^2(x-5), (x-2)^2(x-5)^2, x$$

is a basis for $\mathcal{P}_4(\mathbb{R})$.

(c) Find a subspace W of $\mathcal{P}_4(\mathbb{R})$ so that $\mathcal{P}_4(\mathbb{R}) = U \oplus W$.

Answer. Let W be the span of x.

- **9.** Let $U = \{ p \in \mathcal{P}_4(\mathbb{R}) : \int_{-1}^1 p = 0 \}.$
 - (a) Find a basis for U.

Answer. As a proper subspace of the five dimensional space $\mathcal{P}_4(\mathbb{R})$, the dimension of U is at most four. The list $x, 3x^2 - 1, x^3, 5x^4 - 1$ is a list of four independent polynomials in U, hence is a basis. To see that the list is independent, note that no polynomial in this list can be a linear combination of the previous polynomials since the degree of each polynomial is strictly greater than the degrees of the polynomials that preceed it.

(b) Extend your basis to a basis of $\mathcal{P}_4(\mathbb{R})$

Answer. It suffices to add any polynomial not in U. For example, the polynomial 1 works: $x, 3x^2 - 1, x^3, 5x^4 - 1, 1$.

(c) Find a subspace W of $\mathcal{P}_4(\mathbb{R})$ so that $\mathcal{P}_4(\mathbb{R}) = U \oplus W$.

Answer. Let W be the span of 1 — that's the space of constant polynomials.

10. Prove that any two three dimensional subspaces of \mathbb{R}^5 must have a nonzero vector in their intersection.

Answer. Let U_1, U_2 be two three dimensional subspaces of \mathbb{R}^5 . We know

 $\dim(U_1) + \dim(U_2) - \dim(U_1 \cap U_2) = \dim(U_1 + U_2)$

Therefore, $3 + 3 - \dim(U_1 \cap U_2) \leq 5 \Rightarrow \dim(U_1 \cap U_2) > 0$ and therefore must contain a nonzero vector.