Name:

1	15.
2	
3	
4	
5	
6	
8	
9	
10	
11	
12	
13	
14	

True/False [1 pt each] For problems 1–14, decide whether each statement is true or false. Put **T** or **F** on the answer sheet.

Part I

Use the functions e, f and g as defined below for problems 1–6

$\{1,2,3\} \stackrel{e}{\longrightarrow} \{1,2,3\}$	$\{1,2,3\} \xrightarrow{f} \{1,2,3\}$	$\{1,2,3\} \xrightarrow{g} \{1,2,3\}$
$1 \longmapsto 1$	$1 \longmapsto 2$	$1 \longmapsto 3$
$2 \longmapsto 2$	$2 \longmapsto 1$	$2 \longmapsto 1$
$3 \longmapsto 3$	$3 \longmapsto 3$	$3 \longmapsto 2$
fo		

- 1. $2 \xrightarrow{fg} 2$.
- **2.** fg = e.
- **3.** *f* is bijective.

4.
$$gf = fg$$
.

5.
$$ggf = fg$$
.

6. ggf is an inverse for fg.

Part II: More True/False

7. The relation ~ defined on \mathbb{Z} by $m \sim n \Leftrightarrow \text{gcd}(m, n) = 1$ is an equivalence relation.

8. The composition of two monomorphisms is a monomorphism.

9. A function $f : X \to Y$ between two sets *X* and *Y* is surjective if and only if there exists a function $h : Y \to X$ with $fh = id_Y$.

10. Let *X* and *Y* be sets and suppose $f : X \to Y$. If for all functions $g : Y \to Z$ and $h: Y \to Z$, $gf = hf \Rightarrow g = h$, then *f* is surjective.

11. Let *X* and *Y* be sets and consider functions $f : X \to Y$, $g : Y \to X$, and $h : Y \to X$. If $hf = id_X$ and $fg = id_Y$ then g = h.

Part III

Use the following information for the problems 12, 13, and 14. Let \mathcal{A}, \mathcal{B} , and *C* be the following sets

 $\mathcal{A} = \{A, B, C, \dots, Y, Z\}$ $\mathcal{B} = \{\text{Isabella, Madison, Olivia, Liam, Joseph, Jayden, Esther, Elijah, Moshe, Emma, Mia}$ $<math>C = \{\text{yellow, purple}\}.$

and let $f : \mathcal{B} \to \mathcal{A}$ and $g : \mathcal{B} \to C$ be the functions defined by

f(x) = the first letter of the name x $g(x) = \begin{cases} \text{yellow} & \text{if name } x \text{ has an even number of letters} \\ \text{purple} & \text{if name } x \text{ has an odd number of letters} \end{cases}$

12. The function defined by

$$C \xrightarrow{n} \mathcal{B}$$
yellow \longmapsto Elijah

purple \longmapsto Madison

is a right inverse for *g*

13. Define an equivalence relation ~ on \mathcal{B} by $x \sim x' \Leftrightarrow f(x) = f(x')$. That is, two names are equivalent if and only if they begin with the same letter. There are Let $p : \mathcal{B} \twoheadrightarrow \mathcal{B}/\sim$ be the natural surjection mapping a name to its equivalence class.

The map *g* factors through *p*. That is, there exists a well defined map $h : \mathcal{B}/\sim \rightarrow C$ so that hp = g as pictured below:

14. Consider the natural projection $\pi_{\mathcal{B}} : \mathcal{B} \times C \to \mathcal{B}$. Define a map $s : \mathcal{B} \to \mathcal{B} \times C$ by s(x) = (x, g(x)). Then *s* is a section of $\pi_{\mathcal{B}}$. That is $\pi_{\mathcal{B}}s = \mathrm{id}_{\mathcal{B}}$. Here is a picture:

Part IV

Short answer [3 points]

15. Choose one of the True/False problems above and explain why it is true or false. Write your answer clearly and carefully. Neatness counts.