Name:

1	
2	
2	
3	
4	
5	
5	
6	
7	
8	
8	
9	
10	
11	
12	
13	
14	

True/False [1 pt each] For problems 1-14, decide whether each statement is true or false. Put Tor \mathbf{F} on the answer sheet.

Part I

Use the functions e, f and g as defined below for problems 1-6
$\{1,2,3\} \xrightarrow{e}\{1,2,3\}$

$2 \longmapsto 2$
$\{1,2,3\} \xrightarrow{f}\{1,2,3\}$
$\{1,2,3\} \xrightarrow{g}\{1,2,3\}$
$1 \longmapsto 2$
$1 \longmapsto 3$
$2 \longmapsto 1$
$3 \longmapsto 3$
$2 \longmapsto 1$
$3 \longmapsto 2$

1. $2 \stackrel{f g}{\longmapsto} 2$.
2. $f g=e$.
3. f is bijective.
4. $g f=f g$.
5. $g g f=f g$.
6. $g g f$ is an inverse for $f g$.

Part II: More True/False

7. The relation \sim defined on \mathbb{Z} by $m \sim n \Leftrightarrow \operatorname{gcd}(m, n)=1$ is an equivalence relation.
8. The composition of two monomorphisms is a monomorphism.
9. A function $f: X \rightarrow Y$ between two sets X and Y is surjective if and only if there exists a function $h: Y \rightarrow X$ with $f h=\operatorname{id}_{\gamma}$.
10. Let X and Y be sets and suppose $f: X \rightarrow Y$. If for all functions $g: Y \rightarrow Z$ and $h: Y \rightarrow Z, g f=h f \Rightarrow g=h$, then f is surjective.
11. Let X and Y be sets and consider functions $f: X \rightarrow Y, g: Y \rightarrow X$, and $h: Y \rightarrow X$. If $h f=\operatorname{id}_{X}$ and $f g=\operatorname{id}_{Y}$ then $g=h$.

Part III

Use the following information for the problems 12,13 , and 14 . Let \mathcal{A}, \mathcal{B}, and C be the following sets

$$
\begin{aligned}
\mathcal{A} & =\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \ldots, \mathrm{Y}, \mathrm{Z}\} \\
\mathcal{B} & =\{\text { Isabella, Madison, Olivia, Liam, Joseph, Jayden, Esther, Elijah, Moshe, Emma, Mia }\} \\
\mathcal{C} & =\{\text { yellow, purple }\}
\end{aligned}
$$

and let $f: \mathcal{B} \rightarrow \mathcal{A}$ and $g: \mathcal{B} \rightarrow \mathcal{C}$ be the functions defined by

$$
\begin{aligned}
& f(x)=\text { the first letter of the name } x \\
& g(x)= \begin{cases}\text { yellow } & \text { if name } x \text { has an even number of letters } \\
\text { purple } & \text { if name } x \text { has an odd number of letters }\end{cases}
\end{aligned}
$$

12. The function defined by

$$
\begin{gathered}
\qquad C \xrightarrow{h} \mathcal{B} \\
\text { yellow } \longmapsto \text { Elijah } \\
\text { purple } \longmapsto \text { Madison }
\end{gathered}
$$

is a right inverse for g
13. Define an equivalence relation \sim on \mathcal{B} by $x \sim x^{\prime} \Leftrightarrow f(x)=f\left(x^{\prime}\right)$. That is, two names are equivalent if and only if they begin with the same letter. There are Let $p: \mathcal{B} \rightarrow \mathcal{B} / \sim$ be the natural surjection mapping a name to its equivalence class.

The map g factors through p. That is, there exists a well defined map $h: \mathcal{B} / \sim \rightarrow C$ so that $h p=g$ as pictured below:

14. Consider the natural projection $\pi_{\mathcal{B}}: \mathcal{B} \times \mathcal{C} \rightarrow \mathcal{B}$. Define a map $s: \mathcal{B} \rightarrow \mathcal{B} \times C$ by $s(x)=(x, g(x))$. Then s is a section of $\pi_{\mathcal{B}}$. That is $\pi_{\mathcal{B}} \mathcal{S}=\operatorname{id}_{\mathcal{B}}$. Here is a picture:

Part IV

Short answer [3 points]

15. Choose one of the True/False problems above and explain why it is true or false. Write your answer clearly and carefully. Neatness counts.
