Name:

1	$\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right)$			
2	$\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right)$			
3	$\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right)$			
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				

Name:
15.

Short Answer [1 pt each] Problems 1 through 5 concern computations in the symmetric group S_{5}. For these problems, $\sigma=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3\end{array}\right)$ and $\tau=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 1 & 4 & 3\end{array}\right)$.

1. $\sigma \tau=$
2. $\sigma^{-1}=$
3. If $\sigma^{2} x=\tau$ then $x=$
4. $|\sigma|=$
5. $\left|S_{5}\right|=$

True/False [1 pt each] For problems 6-14, decide whether each statement is true or false. Put T or \mathbf{F} on the answer sheet.
6. The binary operation \star defined on \mathbb{Z} by $a \star b=3 a b$ is associative.
7. Suppose G is a group and $x, y \in G$ satisfy $x^{2}=y^{3}=e$ and $y x=x y^{2}$. Then $(y x)^{-1}=x y^{2}$.
8. If G is a group and $g^{2}=e$ for every $g \in G$, then G is abelian.
9. Every element of S_{3} has order 1, 2, or 3.
10. $\left|(\mathbb{Z} / 12 \mathbb{Z})^{*}\right|=5$.
11. $\left|[3]_{7}\right|=6$ in $(\mathbb{Z} / 7 \mathbb{Z})^{*}$.
12. If $\phi: G \rightarrow H$ is a group homomorphism, then $|\phi(g)|=|g|$ for all $g \in G$.
13. S_{3} and $\mathbb{Z} / 6 \mathbb{Z}$ are isomorphic.
14. $\mathbb{Z} / 6 \mathbb{Z}$ and $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$ are isomorphic.

Short answer [6 points]

15. Choose one of the True/False problems above and explain why it is true or false. Write your answer clearly and carefully on the back of your answer sheet. Neatness counts.
