Name:

1	$\begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \end{pmatrix}$
2	$\begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \end{pmatrix}$
3	$\begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \end{pmatrix}$
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	

Name:

15.

Short Answer [1 pt each] Problems 1 through 5 concern computations in the symmetric group S_5 . For these problems, $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 1 & 4 & 3 \end{pmatrix}$.

1. $\sigma \tau =$

- **2.** $\sigma^{-1} =$
- **3.** If $\sigma^2 x = \tau$ then x =
- **4.** |σ| =
- 5. $|S_5| =$

True/False [1 pt each] For problems 6–14, decide whether each statement is true or false. Put **T** or **F** on the answer sheet.

- **6.** The binary operation \star defined on \mathbb{Z} by $a \star b = 3ab$ is associative.
- 7. Suppose *G* is a group and $x, y \in G$ satisfy $x^2 = y^3 = e$ and $yx = xy^2$. Then $(yx)^{-1} = xy^2$.
- **8.** If *G* is a group and $g^2 = e$ for every $g \in G$, then *G* is abelian.
- **9.** Every element of S_3 has order 1, 2, or 3.
- **10.** $|(\mathbb{Z}/12\mathbb{Z})^*| = 5.$
- **11.** $|[3]_7| = 6$ in $(\mathbb{Z}/7\mathbb{Z})^*$.
- **12.** If ϕ : $G \rightarrow H$ is a group homomorphism, then $|\phi(g)| = |g|$ for all $g \in G$.
- **13.** S_3 and $\mathbb{Z}/6\mathbb{Z}$ are isomorphic.
- **14.** $\mathbb{Z}/6\mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ are isomorphic.

Short answer [6 points]

15. Choose one of the True/False problems above and explain why it is true or false. Write your answer clearly and carefully on the back of your answer sheet. Neatness counts.