Short Answer [1 pt each] Problems 1 through 5 concern computations in the symmetric group S_{5}. For these problems, $\sigma=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3\end{array}\right)$ and $\tau=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 1 & 4 & 3\end{array}\right)$.

1. $\sigma \tau=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 4 & 3 & 1\end{array}\right)$.
2. $\sigma^{-1}=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 3 & 4\end{array}\right)$.
3. If $\sigma^{2} x=\tau$ then $x=\sigma^{-2} \tau=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 3 & 1\end{array}\right)$.
4. $|\sigma|=6$.
5. $\left|S_{5}\right|=120$.

True/False [1 pt each] For problems 6-14, decide whether each statement is true or false. Put T or \mathbf{F} on the answer sheet.
6. The binary operation \star defined on \mathbb{Z} by $a \star b=3 a b$ is associative.

Answer. True. $(a \star b) \star c=3 a b \star c=3(3 a b) c$ and $a \star(b \star c)=3 a(b \star c)=3 a(3 b c)=9 a b c$.
7. Suppose G is a group and $x, y \in G$ satisfy $x^{2}=y^{3}=e$ and $y x=x y^{2}$. Then $(y x)^{-1}=x y^{2}$.

Answer. True. To check, multiply $x y^{2} * y x=x y^{3} x=x e x=x^{2}=e$.
8. If G is a group and $g^{2}=e$ for every $g \in G$, then G is abelian.

Answer. True. Suppose G is a group with $g^{2}=e$ for every $g \in G$. Now consider two elements $x, y \in G$. We know $x^{2}=y^{2}=(x y)^{2}=e$, so $x^{-1}=x, y^{-1}=y$, and $(x y)^{-1}=x y$. We also have $(x y)^{-1}=y^{-1} x^{-1}=y x$. Since $x y$ and $y x$ both equal $(x y)^{-1}$, they must be equal.
9. Every element of S_{3} has order 1,2 , or 3.

Answer. True. You can list the six elements and see this. Here's another way to see it. Every element of S_{3} must have an order that divides 6 , but no element can have order 6 since then S_{3} would be cyclic, hence Abelian, which it is not.
10. $\left|(\mathbb{Z} / 12 \mathbb{Z})^{*}\right|=5$.

Answer. False. $(\mathbb{Z} / 12 \mathbb{Z})^{*}$ has consists of the elements in $\mathbb{Z} / 12 \mathbb{Z}$ whose greatest common divisor with 12 is one. So, $(\mathbb{Z} / 12 \mathbb{Z})^{*}=\{1,5,7,11\}$.
11. $\left|[3]_{7}\right|=6$ in $(\mathbb{Z} / 7 \mathbb{Z})^{*}$.

Answer. True. We check. We'll drop the [$]_{7}$ from our notation.

$$
3^{2}=2, \quad 3^{3}=3 * 2=6, \quad 3^{4}=3 * 6=4, \quad 3^{5}=3 * 4=5, \quad 3^{6}=3 * 5=1 .
$$

12. If $\phi: G \rightarrow H$ is a group homomorphism, then $|\phi(g)|=|g|$ for all $g \in G$.

Answer. False. Consider the group homomorphism $\phi: \mathbb{Z} / 6 / Z \rightarrow \mathbb{Z} / 3 \mathbb{Z}$ defined by $\phi\left([n]_{6}\right)=[n]_{3}$. Here, $\left|\phi\left([1]_{6}\right)\right|=\left|[1]_{3}\right|=3$ and $\left|[1]_{6}\right|=6$.
13. S_{3} and $\mathbb{Z} / 6 \mathbb{Z}$ are isomorphic.

Answer. False. S_{3} is not abelian and \mathbb{Z} is abelian.
14. $\mathbb{Z} / 6 \mathbb{Z}$ and $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$ are isomorphic.

Answer. True. The map $[n]_{6} \mapsto\left([n]_{2},[n]_{3}\right)$ is an isomorphism.

