Name:

1	
2	
3	
4	
5	
6	
7	
8	
9	

Choose one. 10, 11, or 12:

True or False [1 pt each]

1. In a group *G* if ab = ac then b = c.

2. For functions $f : B \to C$, $g : A \to B$ and $h : A \to B$, if fg = fh then g = h.

3. If $A \neq \emptyset$ and $f : A \rightarrow B$ is an injective function, then there exists a function $g : B \rightarrow A$ with $gf = id_A$.

4. If $\phi : G \to G'$ is an injective group homomorphism, then there exists a group homomorphism $\psi : G' \to G$ with $\psi \phi = id_G$.

5. The function $f : \mathbb{Z} \to GL_2(\mathbb{R})$ defined by $f(a) = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ is a group homomorphism.

6. The subgroup $S_3 \subset S_4$ is a normal subgroup of S_4 .

7. If *H* and *K* are subgroups of a group *G* and |H| = 8 and |K| = 15, then $H \cap K = \{e\}$.

8. The groups $(\mathbb{Z}/12\mathbb{Z})^*$ and $(\mathbb{Z}/5\mathbb{Z})^*$ are isomorphic.

9. If $\phi : G \to G'$ is a group homomorphism then $\phi(a) = \phi(b)$ if and only if *a* and *b* are in the same coset of ker(ϕ).

Mathematical writing [3 pts]

Choose one of the following problems.

10. The subgroup $K = \{1, (12)(34), (13)(24), (14)(23)\}$ is a normal subgroup of S_4 . Your problem: compute the cosets of *K* and compute a multiplication table for S_4/K .

11. Define what it means for a subgroup N of a group G to be *normal*. Give an example of a group G with a subgroup N that is normal and a subgroup H that is not normal. Justify your answer.

12. Let ϕ : $G \rightarrow G'$ be a group homomorphism. Define what it means for ϕ to be *monic* and for ϕ to be *left-invertible*. Prove that if ϕ is left invertible then ϕ is monic, but not conversely.