1. Prove that $S L_{2}(\mathbb{R})$ is a normal subgroup of $G L_{2}(\mathbb{R})$.
2. Let $G=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 8 \mathbb{Z}$ and $H=\{(0,0),(1,2),(0,4),(1,6)\}$. Compute the cosets of $H$ and write down a multiplication table for $G / H$.
3. The dihedral group $D_{8}$ has a presentation as a finitely generated group as

$$
D_{8}=\left\langle x, y: x^{2}=y^{4}=1, \quad y x=x y^{3}\right\rangle .
$$

One can identify $x$ and $y$ with the following symmetries of a square: $x$ is reflection through the horizontal line passing through the middle of the square and $y$ denotes the counterclockwise rotation by 90 degrees. Make a multiplication table for $D_{8}$ using $\left\{1, y, y^{2}, y^{3}, x, x y, x y^{2}, x y^{3}\right\}$.
4. The subgroup $K=\left\{1, y^{2}\right\}$ is a normal subgroup of $D_{8}$. Compute the cosets of $K$ and compute a multiplication table for $D_{4} / K$.
5. Let $G$ be a group. An element $b \in G$ is a conjugate of $a \in G$ if there exists $g \in G$ so that $b=g^{-1} a g$. Define a relation $\sim$ on $G$ by

$$
b \sim a \Leftrightarrow b \text { is a conjugate of } a \text {. }
$$

(a) Prove that $\sim$ defines an equivalence relation on $G$.
(b) For $G=S_{3}$, describe the equivalence classes of $\sim$. Are these equivalence classes the cosets of a subgroup of $S_{3}$ ?
(c) Prove or disprove: in every group, $b a$ is conjugate to $a b$.
(d) The matrices $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $\left[\begin{array}{ll}2 & 3 \\ 4 & 1\end{array}\right]$ are conjugate in $G L_{2}(\mathbb{R})$.
6. Compute the order of $(8517)(4569)(102341) \in S_{10}$.
7. Prove that if $H$ and $K$ be subgroups of a group $G$ then $H \cap K$ is a subgroup of $G$.

## Prove or disprove:

8. In a group, if $a$ and $b$ have finite, then $a b$ has finite order.
9. In a group, if $a$ and $b$ have finite order, then $a b$ and $b a$ have the same order.
10. In a group, if $|a|=n$ and $|b|=k$, then $|a b|=\operatorname{lcm}(n, k)$.
11. $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ and $\mathbb{Z} / 4 \mathbb{Z}$ are isomorphic.
12. $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$ and $\mathbb{Z} / 6 \mathbb{Z}$ are isomorphic.
13. There exists a nontrivial homomorphism $S_{3} \rightarrow \mathbb{Z} / 5 \mathbb{Z}$.
14. There exists a nontrivial homomorphism $S_{3} \rightarrow \mathbb{Z} / 3 \mathbb{Z}$.
15. There exists a nontrivial homomorphism from $S_{3}$ to a group with 81 elements.
16. The map $\phi: \mathbb{Z} / 2 \mathbb{Z} \rightarrow S_{3}$ defined by $\phi(0)=e$ and $\phi(1)=(12)$ is a monic homomorphism.
17. The map $\phi: \mathbb{Z} / 2 \mathbb{Z} \rightarrow S_{3}$ defined by $\phi(0)=e$ and $\phi(1)=(12)$ is left invertible homomorphism.
18. Let $G$ and $G^{\prime}$ be groups with $|G|=18$ and $\left|G^{\prime}\right|=15$. There exists a homomorphism $\phi: G \rightarrow G^{\prime}$ with $|\operatorname{ker} \phi|=6$.
