

Theorem: Every G-set decomposes into the disjoint union of sets on which G acts trasitively

Detiil: Stub(a) and Stub(a') ane conjugante subgroups of G. $a'=qg \implies Stab(a')=g'Stab(a)g$ $\implies H \ G \ \cong \ -i \ H \ G$ as G-sets.

Also:
$$G$$
 acts transitively on $S \Longrightarrow$
 $S \cong SLU(a) G \Longrightarrow$
 $Orbit(a) || SLU(a) | \cong |G|$
"Orbit-Stubilizer Theorem"

Meanen: The group of automorphisms
of
$$H/G$$
 as a G-Set is isomorphic
to $N(H)/H$.
Proof: Morphisms H/G \rightarrow H/G correspond to ge G
with $g'Hg \in H$ and two are equal iff
 $Hg = Hg' \Rightarrow gg' \in H$.

Callyon -set 7-) ≅ N(H)/H Aut (HG) 0 ſ J 00. G §*?=