Instructions: Again, I pulled problems from old qualifying exams that you should be able to do. It would be good to solve them all, but just write up and turn in solutions to 1 , 2c, 4, 7, 8, 10, 11, 14 (most of these have short solutions!) Due on Monday, November 14.

## 1 The compact open topology

## 1. [Problem 1 from Spring 2015]

Consider $\operatorname{Top}([0,1], \mathbb{R})$ with the compact open topology. Define a family of functions $\mathcal{F} \subset \operatorname{Top}([0,1], \mathbb{R})$ by $\mathcal{F}=\left\{f_{a}: 0<a<1\right\}$ where $f_{a}(x)=1-\frac{x}{a}$. Is $\mathcal{F}$ compact?

## 2. [Problem 4 from Fall 2017 and 3 from Spring 2021]

Let $X=\operatorname{Top}([0,1],[0,1])$ with the compact open topology.
(a) Is the function $\mathrm{ev}: \mathrm{X} \times[0,1] \rightarrow[0,1]$ defined by $(f, x) \mapsto f(x)$ continuous?
(b) Is the map $I: X \rightarrow[0,1]$ defined by $f \mapsto \int_{0}^{1} f$ continuous?
(c) Is the evaluation map $\mathrm{ev}: X \times[0,1] \rightarrow[0,1]$ defined by $(f, x) \mapsto f(x)$ continuous if $X$ is given the product topology.

## 2 Compactifications

3. [Problem 7 from Fall 2021]

Suppose $X$ and $Y$ are noncompact, locally compact, and Hausdorff. Prove that $(X \times Y)^{*} \cong$ $X^{*} \wedge Y^{*}$. Here (-)* means the one-point compactification and $\wedge$ means the smash product of pointed spaces, with the base point being the point added in the compactification.

## 4. [Problem 4 from Fall 2015]

Prove that any compact Hausdorff space is a retract of its Stone-Čech compactification.

## 5. [Problem 7 from Fall 2015]

Prove that the Stone-Čech compactification of the rationals is uncountable.

## 6. [Problem 4c and 4d from Spring 2016]

Look up what the projective space $\mathbb{R} \mathbb{P}^{n}$ are.
(a) Prove or disprove: the one-point compactification of $\mathbb{R}$ is $\mathbb{R P}^{1}$.
(b) Prove or disprove: the one-point compactification of $\mathbb{R}^{2}$ is $\mathbb{R} \mathbb{P}^{2}$.

## 3 CW complexes and Euler characteristic

## 7. [Problem 12a from Spring 2015]

Show that $S^{1} \vee S^{1} \vee S^{2}$ and the torus $T$ both have $C W$-structures with four cells: one 0 -cell, two 1-cells, and one 2-cell.

## 8. [Problem 12 from Fall 2016 15c from Spring 2021]

The number of cells is a CW structure on a space $X$ is not an invariant of the space. It turns out, however, that the alternating sum is and invariant called the Euler characteristic of $X$.

$$
\chi(X):=\sum(-1)^{i} d_{i}
$$

where $d_{i}$ is the number of $i$ cells of a CW structure on $X$.
(a) Compute $\chi\left(T^{n}\right)$ where $T^{n}=\left(S^{1}\right)^{\times n}$.
(b) Compute $\chi\left(S^{2} \times T^{2}\right)$.

## 4 Suspensions

## 9. [Problems 4 and 7 from Spring 2000]

Let $\Sigma X$ be the suspension of $X$. Prove that
(a) If $X$ is connected, then $\Sigma X$ is simply connected.
(b) If $X$ is contractible, then $\Sigma X$ is contractible.
(c) $X$ is compact if and only if $\Sigma X$ is compact.
(d) $X$ is Hausdorff if and only if $\Sigma X$ is Hausdorff.
10. [Problem 4 from Spring 2017] Let Top ${ }_{*}$ be the category of pointed topological spaces and let $\Sigma: \mathbf{T o p}_{*} \rightarrow$ Top $*$ be the functor that sends a pointed space $X$ to its reduced suspension $\Sigma X:=S^{1} \wedge X$. Let $\Omega: \mathbf{T o p}_{*} \rightarrow \mathbf{T o p}_{*}$ be the functor that sends a pointed space $X$ to its based loop space $\Omega X:=\mathbf{T o p}_{*}\left(S^{1}, X\right)$. The setup

$$
\Sigma: \operatorname{Top}_{*} \rightleftarrows \operatorname{Top}_{*}: \Omega
$$

defines an adjunction. Your problem: describe the unit and counit of this adjunction.

## 5 And a few miscellaneous problems...

## 11. [Problem 4 from Fall 2000]

Let $1 \leq n \leq \infty$ and let $X_{n}=S^{1} \vee S^{1} \vee \cdots \vee S^{1}$ be the wedge sum of $n$ copies of $S^{1}$. If $n=\infty$, then $X_{\infty}$ is the colimit of $S^{1} \subset S^{1} \vee S^{1} \subset S^{1} \vee S^{1} \vee S^{1} \subset \ldots$
(a) Prove that $X_{n}$ is compact if and only if $n<\infty$.
(b) Prove that $X_{n}$ is connected for all $n$.

## 12. [Problem 5a from Spring 2017]

Let $X$ be the torus and $Y$ be the two-sphere with three points removed.
(a) Are $X$ and $Y$ homotopic?
(b) Are $X$ and $Y$ homeomorphic?

## 13. [Problem 1 from Part II of Fall 2005]

Let $(X, x)$ and $(Y, y)$ be two based spaces. Prove that $\pi_{1}((X, x) \times(Y, y)) \simeq \pi_{1}(X, x) \times \pi_{1}(Y, y)$.

## 14. [Problem 5a from Spring 2002]

Let $A$ be a retract of $X$. This means that $A$ is a subset of $X$ and the inclusion $i: A \rightarrow X$ is left-invertible. Prove that the inclusion $i: A \rightarrow X$ induces a one-to-one map in homology.

Note: For this problem, you only need to know that homology is a functor.
15. [Problem 7 from Spring 2021 and 8 from Fall 2021]

Does the functor $\pi_{1}: \operatorname{Top}_{*} \rightarrow$ Grp have a left or right adjoint $F: \operatorname{Grp} \rightarrow \operatorname{Top}_{*}$ ? Is $\pi_{1}$ representable?

