1. Let $B=S^{1} \vee S^{1}$ and consider the cover $p: E \rightarrow B$ pictured below

I've tried to sketch the covering space in \mathbb{R}^{3} and the base space in the $x y$-plane with the covering map being project $(x, y, z) \mapsto(x, y)$. The seeming self intersections in E are an illusion of the way I'm picturing this, like the way a drawing of a Klein bottle appears to intersect itself. You might find it more helpful to have this other picture of E below. Here, the space E is pictured as a graph and the map $E \rightarrow B$ is described by the labelling and arrows.

(a) Compute $\pi_{1}\left(E, x_{1}\right)$ and $\pi_{1}\left(E, x_{2}\right)$ as subgroups of $\pi_{1}(B, x)$.

Hint: Use the picture. Let a be the class of the loop in B starting at x and proceeding counterclockwise once around the circle on the left, and let b be the class of the loop in B starting at x and proceeding counterclockwise once around the circle on the right. So, $\pi_{1}(B, x)=F(a, b)$. Now, both $\pi_{1}\left(E, x_{1}\right)$ and $\pi_{1}\left(E, x_{2}\right)$ are isomorphic to a free group on 5 generators, since E is homotopic to $S^{1} \vee S^{1} \vee S^{1} \vee S^{1} \vee S^{1}$, which you can see by contracting the " a " edges.
(b) Describe the action of $\pi_{1}(X, x)$ on the fiber $p^{-1}(x)$.
(c) Compute $\operatorname{Aut}(E)$, the group of automorphisms of the cover $E \xrightarrow{p} B$.
2. The free group on two generators $F(a, b)$ is a subgroup of the free group on three generators $F(c, d, e)$ and vice versa. Find covering maps $p: E \rightarrow X$ with
(a) $F(c, d, e)=\pi_{1}(B, b)$ and $F(a, b)=\pi_{1}(E, e)$
(b) $F(a, b)=\pi_{1}(B, b)$ and $F(c, d, e)=\pi_{1}(B, e)$
3. Consider the topological space $B=\{a, b, c, d\}$ with topology

$$
\tau=\{\emptyset,\{a\},\{c\},\{a, c\},\{a, b, c\},\{c, d, a\},\{a, b, c, d\}\} .
$$

The universal cover of B is the space $\tilde{E}=\left\{a_{i}, b_{i}, c_{i}, a_{i}: i \in \mathbb{Z}\right\}$ with topology generated by the basic open sets $\left\{a_{i}\right\},\left\{c_{i}\right\},\left\{a_{i}, b_{i}, c_{i}\right\}$ and $\left\{c_{i}, d_{i+1}, a_{i+1}\right\}$. The covering map is given by

$$
\begin{gathered}
p: \tilde{E} \rightarrow B \\
x_{i} \mapsto x
\end{gathered}
$$

Use a covering space argument to compute the fundamental group of B.
4. Suppose $(E, e) \xrightarrow{p}(B, b)$ is any based cover. Prove that the induced map in homotopy groups $p_{*}: \pi_{n}(E, e) \rightarrow \pi_{n}(B, b)$ is an isomorphism for $n \geq 2$.

5. [Problem 4 Spring 2014]

Find all connected three-fold covers of the wedge sum of two projective planes, carefully justifying your answer.

6. Problem 3 Spring 2011]

Use a covering space argument to prove that any map $\mathbb{R} P^{2} \times \mathbb{R} P^{2} \rightarrow S^{1}$ is null-homotopic.

