Name:

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

1. Which one of the following statements is a proposition?
(a) $5+7=10$
(b) $x+2=11$
(c) Answer this question.
(d) This sentence is false.
(e) Who won the baseball game?
2. The contrapositive of "If you get an A on the final exam, then you'll get an A for the course" is
(a) If you got an A for the course, then you got an A on the final exam.
(b) If you get an A on the final exam, then you won't get an A for the course.
(c) If you don't get an A on the final exam, then you won't get an A for the course.
(d) If you don't get an A on the final exam, then you'll get an A for the course.
(e) If you don't get an A for the course, then you didn't get an A on the final exam.
3. How many rows will a truth table for the compound proposition $(p \vee q) \leftrightarrow(p \wedge s \wedge q)$ have?
(a) 3
(b) 5
(c) 6
(d) 8
(e) 32
4. Let p and q be the propositions

$$
\begin{aligned}
& p: \text { It is below freezing. } \\
& q: \text { It is snowing. }
\end{aligned}
$$

Which statement is the proposition $\neg q \rightarrow \neg p$?
(a) If it is not snowing, then it is not below freezing.
(b) It is not snowing and it is not below freezing.
(c) It is not snowing and it is below freezing.
(d) It is snowing or it is below freezing.
(e) It is not snowing and it is below freezing.
5. Again, let p and q be the propositions

$$
\begin{aligned}
& p: \text { It is below freezing. } \\
& q: \text { It is snowing. }
\end{aligned}
$$

Which statement is not equivalent to the proposition $q \rightarrow p$?
(a) If it is not below freezing, then it is not snowing.
(b) If it is snowing, then it is below freezing.
(c) It is either not snowing or it is below freezing.
(d) If it is below freezing, then it is snowing.
(e) It is necessary that it be below freezing in order for it to be snowing.
6. Consider the following propositional functions

$$
\begin{aligned}
& p(x): x \text { has feathers } \\
& q(x): x \text { can fly } \\
& r(x): x \text { lays eggs } \\
& s(x): x \text { is a bird }
\end{aligned}
$$

Which is the statement "All birds have feathers and lay eggs but not all birds can fly."
(a) $\exists x(s(x) \wedge p(x) \wedge r(x) \wedge \neg q(x))$
(b) $\forall x(\neg q(x) \rightarrow s(x)) \vee(p(x) \vee q(x))$
(c) $\exists x(\neg q(x) \rightarrow s(x)) \vee(p(x) \vee q(x))$
(d) $\forall x(s(x) \rightarrow(p(x) \wedge r(x)) \wedge \exists x(s(x) \wedge \neg q(x))$
(e) $\forall x(s(x) \rightarrow((p(x) \wedge r(x)) \vee \neg q(x)))$
7. Which of the following propositions is true?
(a) $\forall n \in \mathbb{R}\left(n^{2} \geq n\right)$
(b) $\forall n \in \mathbb{Z}\left(n^{2} \geq n\right)$
(c) $\exists n \in \mathbb{Z}\left(n^{2}<n\right)$
(d) $\exists n \in \mathbb{R}\left(n^{2}<0\right)$
8. Which of the following propositions is false?
(a) $\exists n \in \mathbb{R}\left(n^{2}<n\right)$
(b) $\forall n \in \mathbb{Z}\left(n^{2}=1 \rightarrow n=1\right)$
(c) $\forall n \in \mathbb{N}\left(n^{2}=1 \rightarrow n=1\right)$
(d) $\forall n \in \mathbb{Z}\left(n^{2}=n \rightarrow(n=1 \vee n=0)\right)$
(e) $\exists n \in \mathbb{R}\left(n^{2}=n\right)$
9. Which one of the following propositions is not satisfiable?
(a) $\neg p \rightarrow p$
(b) $(p \rightarrow q) \wedge(p \rightarrow \neg q)$
(c) $(p \vee \neg q) \wedge(q \vee \neg r) \wedge(r \vee \neg p)$
(d) $(p \wedge \neg q) \wedge(\neg p \vee q)$
10. Which one of the following propositions is not a tautology?
(a) $p \vee \neg p$
(b) $(p \wedge q) \rightarrow p$
(c) $\neg(p \wedge q) \leftrightarrow(\neg p \vee \neg q)$
(d) $(p \rightarrow q) \leftrightarrow(\neg p \vee q)$
(e) $(p \vee q) \rightarrow q$

