Solutions

1	a
2	e
3	d
4	a
5	d
6	d
7	b
8	b
9	d
10	е

1. Which one of the following statements is a proper
--

- (a) 5 + 7 = 10
- (b) x + 2 = 11
- (c) Answer this question.
- (d) This sentence is false.
- (e) Who won the baseball game?

Answer. (a) is a proposition.

- 2. The contrapositive of "If you get an A on the final exam, then you'll get an A for the course" is
 - (a) If you got an A for the course, then you got an A on the final exam.
 - (b) If you get an A on the final exam, then you won't get an A for the course.
 - (c) If you don't get an A on the final exam, then you won't get an A for the course.
 - (d) If you don't get an A on the final exam, then you'll get an A for the course.
 - (e) If you don't get an A for the course, then you didn't get an A on the final exam.

Answer. (e). The given implication is $p \to q$ where p is "you get an A on the final exam" and q is "get an A for the course". The contrapositive is $\neg q \to \neg p$. That's (e). The others are: (a) is the converse $q \to p$ (b) is $p \to \neq q$ (c) is $\neg p \to \neg q$ and (d) is $\neg p \to q$.

3. How many rows will a truth table for the compound proposition $(p \lor q) \leftrightarrow (p \land s \land q)$ have?

(a) 3

(b) 5

(c) 6

(d) 8

(e) 32

Answer. (d).

4. Let p and q be the propositions

p: It is below freezing.

q: It is snowing.

Which statement is the proposition $\neg q \rightarrow \neg p$?

- (a) If it is not snowing, then it is not below freezing.
- (b) It is not snowing and it is not below freezing.
- (c) It is not snowing and it is below freezing.
- (d) It is snowing or it is below freezing.
- (e) It is not snowing and it is below freezing.

Answer. (a) is correct. For the others: (b) is $\neg q \land \neg p$, (c) is $\neq q \land p$, (d) is $q \lor p$, (e) is $\neg q \land p$.

5. Again, let p and q be the propositions

p: It is below freezing.

q: It is snowing.

Which statement is not equivalent to the proposition $q \to p$?

- (a) If it is not below freezing, then it is not snowing.
- (b) If it is snowing, then it is below freezing.
- (c) It is either not snowing or it is below freezing.
- (d) If it is below freezing, then it is snowing.
- (e) It is necessary that it be below freezing in order for it to be snowing.

Answer. (d) is correct. (d) is the proposition $p \to q$ which is not equivalent to $q \to p$. For the others: (a) is $\neg p \to \neq q$, (b) is $q \to p$, (c) is $\neq q \lor p$, and (e) is also $q \to p$.

6. Consider the following propositional functions

 $p(x): x \ has \ feathers$

 $q(x): x \ can \ fly$

 $r(x): x \ lays \ eggs$

s(x): x is a bird

Which is the statement "All birds have feathers and lay eggs but not all birds can fly."

- (a) $\exists x (s(x) \land p(x) \land r(x) \land \neg q(x))$
- (b) $\forall x(\neg q(x) \rightarrow s(x)) \lor (p(x) \lor q(x))$
- (c) $\exists x (\neg q(x) \rightarrow s(x)) \lor (p(x) \lor q(x))$
- (d) $\forall x(s(x) \to (p(x) \land r(x)) \land \exists x(s(x) \land \neg q(x))$
- (e) $\forall x(s(x) \to ((p(x) \land r(x)) \lor \neg q(x)))$

Answer. (d) is correct.

- 7. Which of the following propositions is true?
 - (a) $\forall n \in \mathbb{R} \ (n^2 \ge n)$
- (b) $\forall n \in \mathbb{Z} \ (n^2 \ge n)$
- (c) $\exists n \in \mathbb{Z} \ (n^2 < n)$
- (d) $\exists n \in \mathbb{R} \ (n^2 < 0)$

Answer. (b) is true. The others are false: (a) is false, for example $n = 0.5 \in \mathbb{R}$ satisfies $n^2 < n$. (c) there are no integers n whose square n^2 is smaller than n. (d) there are no real numbers whose square is negative.

- **8.** Which of the following propositions is false?
 - (a) $\exists n \in \mathbb{R} \ (n^2 < n)$
 - (b) $\forall n \in \mathbb{Z} \ (n^2 = 1 \rightarrow n = 1)$
 - (c) $\forall n \in \mathbb{N} \ (n^2 = 1 \rightarrow n = 1)$
 - (d) $\forall n \in \mathbb{Z} \ (n^2 = n \rightarrow (n = 1 \lor n = 0))$
 - (e) $\exists n \in \mathbb{R} \ (n^2 = n)$

Answer. (b) is false. There exists a natural number, specifically n = -1, with $n^2 = 1$ and $n \neq 1$. The others are true: (a) is true, for example $n = 0.5 \in \mathbb{R}$ satisfies $n^2 < n$. (c) is true, the only natural number whose square is 1 is 1 itself. (d) is true if $n^2 = n$ then n = 1 or n = 0. (e) is true, n = 0 or n = 1 works as an example.

- **9.** Which one of the following propositions is not satisfiable?
 - (a) $\neg p \to p$
 - (b) $(p \to q) \land (p \to \neg q)$
 - (c) $(p \vee \neg q) \wedge (q \vee \neg r) \wedge (r \vee \neg p)$
 - (d) $(p \land \neg q) \land (\neg p \lor q)$

Answer. (d) is not satisfiable, as a truth table will reveal, or by noticing that $(\neg p \lor q) = \neg (p \land q)$. So, the proposition in question is $(p \land q) \land \neg (p \land q)$. For the others: (a) is satisfiable when p = F. (b) is satisfiable when p = F. (c) is satisfiable when p, q, r are all true or when p, q, r are all false.

- **10.** Which one of the following propositions is not a tautology?
 - (a) $p \vee \neg p$
 - (b) $(p \land q) \rightarrow p$
 - (c) $\neg (p \land q) \leftrightarrow (\neg p \lor \neg q)$
 - (d) $(p \to q) \leftrightarrow (\neg p \lor q)$
 - (e) $(p \lor q) \to q$

Answer. (e) is not a tautology, it's false when p = T and q = F.