Name:

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
	,

11

Part 1: Multiple choice. One point each.

1. Which one of the following equals $\frac{10+5i}{1+2i}$? (a) 2 (b) 3*i* (c) 3+4*i* (d) 4-3*i* (e) $\frac{1}{3} + \frac{4}{3}i$

2. Which one of the following is *not* a field?

(a) The numbers $\{0,1\}$ with + and \times defined "mod 2"

- (b) The integers \mathbb{Z}
- (c) The rational numbers \mathbb{Q}
- (d) The real numbers \mathbb{R}
- (e) The complex numbers \mathbb{C}

3. Which one of the following statements is false?

- (a) The set $A = \{(a, b, c) \in \mathbb{R}^3 : a + b = c\}$ is a subspace of \mathbb{R}^3 .
- (b) The set $B = \{p \in \mathcal{P}(\mathbb{R}) : p''(1) = 0\}$ is a subspace of $\mathcal{P}(\mathbb{R})$.
- (c) The set $C = \{ f \in \mathbb{R}^{\mathbb{R}} : f(x) = f(x+1) \text{ for all } x \in \mathbb{R} \}$ is a subspace of $\mathbb{R}^{\mathbb{R}}$.
- (d) The set $D = \{(a, b) \in \mathbb{R}^2 : ab = 0\}$ is a subspace of \mathbb{R}^2 .
- (e) The set $E = \{ f \in \mathbb{R}^{[0,1]} : \int_0^1 f(x) \, dx = 0 \}$ is a subspace of $\mathbb{R}^{[0,1]}$.

4. Which one of the following lists of vectors is a basis for \mathbb{C}^2 ?

- (a) (1,i), (i,-1)
- (b) (1,i), (i,0)
- (c) (1,i), (i,0), (0,1)
- (d) (1,1)
- (e) (1,0)
- **5.** Let U, V, and W be the following subspace of \mathbb{R}^3 :

$$U = \{(a, b, c) \in \mathbb{R}^3 : a = b\}$$

$$V = \{(a, b, c) \in \mathbb{R}^3 : a = 0 \text{ and } b = 0\}$$

$$W = \{(a, b, c) \in \mathbb{R}^3 : a + b + c = 0\}$$

Which one of the following statements is true?

- (a) U + V = W
- (b) $U + V = \mathbb{R}^3$
- (c) $U \oplus V = \mathbb{R}^3$
- (d) $U \oplus W = \mathbb{R}^3$
- (e) $V \oplus W = \mathbb{R}^3$

Part II: True or False. One point each.

6. Every polynomial of degree three can be expressed as a linear combination of the polynomials $1, 2 + 4x, 11x^2 + 2x + 3, 7x^3 + 5x^2 - 1$.

7. If p_1, p_2, p_3, p_4 is a list polynomials in $\mathcal{P}_3(\mathbb{R})$ that satisfy $\int_0^1 p_i(x) dx = 0$ then p_1, p_2, p_3, p_4 is dependent.

8. The space $\{p \in \mathcal{P}_3(\mathbb{R}) : p(0) = p(1)\}$ is three dimensional.

9. If U and W are subspaces of a vector space V, then $U \cap W$ is a subspace of V.

10. For vector spaces U, V, and W; if $U \oplus V = U \oplus W$ then V = W.

Part III: Short answer. Two points.

11. Choose one of the true/false problems and explain your answer. Neatness counts.