Name:

| 1 |  |
| :---: | :--- |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |
| 8 |  |
| 9 |  |
| 10 |  |

11

## Part 1: Multiple choice. One point each.

1. Which one of the following equals $\frac{10+5 i}{1+2 i}$ ?
(a) 2
(b) $3 i$
(c) $3+4 i$
(d) $4-3 i$
(e) $\frac{1}{3}+\frac{4}{3} i$
2. Which one of the following is not a field?
(a) The numbers $\{0,1\}$ with + and $\times$ defined " $\bmod 2$ "
(b) The integers $\mathbb{Z}$
(c) The rational numbers $\mathbb{Q}$
(d) The real numbers $\mathbb{R}$
(e) The complex numbers $\mathbb{C}$
3. Which one of the following statements is false?
(a) The set $A=\left\{(a, b, c) \in \mathbb{R}^{3}: a+b=c\right\}$ is a subspace of $\mathbb{R}^{3}$.
(b) The set $B=\left\{p \in \mathcal{P}(\mathbb{R}): p^{\prime \prime}(1)=0\right\}$ is a subspace of $\mathcal{P}(\mathbb{R})$.
(c) The set $C=\left\{f \in \mathbb{R}^{\mathbb{R}}: f(x)=f(x+1)\right.$ for all $\left.x \in \mathbb{R}\right\}$ is a subspace of $\mathbb{R}^{\mathbb{R}}$.
(d) The set $D=\left\{(a, b) \in \mathbb{R}^{2}: a b=0\right\}$ is a subspace of $\mathbb{R}^{2}$.
(e) The set $E=\left\{f \in \mathbb{R}^{[0,1]}: \int_{0}^{1} f(x) d x=0\right\}$ is a subspace of $\mathbb{R}^{[0,1]}$.
4. Which one of the following lists of vectors is a basis for $\mathbb{C}^{2}$ ?
(a) $(1, i),(i,-1)$
(b) $(1, i),(i, 0)$
(c) $(1, i),(i, 0),(0,1)$
(d) $(1,1)$
(e) $(1,0)$
5. Let $U, V$, and $W$ be the following subspace of $\mathbb{R}^{3}$ :

$$
\begin{aligned}
U & =\left\{(a, b, c) \in \mathbb{R}^{3}: a=b\right\} \\
V & =\left\{(a, b, c) \in \mathbb{R}^{3}: a=0 \text { and } b=0\right\} \\
W & =\left\{(a, b, c) \in \mathbb{R}^{3}: a+b+c=0\right\}
\end{aligned}
$$

Which one of the following statements is true?
(a) $U+V=W$
(b) $U+V=\mathbb{R}^{3}$
(c) $U \oplus V=\mathbb{R}^{3}$
(d) $U \oplus W=\mathbb{R}^{3}$
(e) $V \oplus W=\mathbb{R}^{3}$

## Part II: True or False. One point each.

6. Every polynomial of degree three can be expressed as a linear combination of the polynomials $1,2+4 x, 11 x^{2}+2 x+3,7 x^{3}+5 x^{2}-1$.
7. If $p_{1}, p_{2}, p_{3}, p_{4}$ is a list polynomials in $\mathcal{P}_{3}(\mathbb{R})$ that satisfy $\int_{0}^{1} p_{i}(x) d x=0$ then $p_{1}, p_{2}, p_{3}, p_{4}$ is dependent.
8. The space $\left\{p \in \mathcal{P}_{3}(\mathbb{R}): p(0)=p(1)\right\}$ is three dimensional.
9. If $U$ and $W$ are subspaces of a vector space $V$, then $U \cap W$ is a subspace of $V$.
10. For vector spaces $U, V$, and $W$; if $U \oplus V=U \oplus W$ then $V=W$.

## Part III: Short answer. Two points.

11. Choose one of the true/false problems and explain your answer. Neatness counts.
